• Title/Summary/Keyword: Auditory system

Search Result 369, Processing Time 0.027 seconds

Cochlear Electrical Model for the Interpretation of Tinnitus Phenomenon (이명 현상의 해석을 위한 와우의 전기적 모델)

  • 이영주;이낙범;임재중;강희용
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.91-99
    • /
    • 2001
  • 청각기관에서 소리가 전달되어지는 과정에 대한 이론적인 전기/기계적 모델이 이루어진다면 이명환자의 분류 및 전기자극을 이용한 치료방법의 선택에 크게 기여할 수 있을 것이다. 본 연구에서는 기존 청각기관의 모델에 대한 장단점을 파악하여 이를 보완하는 실제의 시스템에 가장 근접한 모델을 수립하고, 청각시스템의 변화를 객관적으로 관찰할 수 있는 이론적인 배경을 수립하고자 하였다. 즉, 유모세포의 상면을 질량을 가진 성분으로 가정하고 그러한 질량의 경도와 제동을 위한 소자들을 첨가하여 새롭게 청각 모델을 수립하였다. 그리고 수립된 모델을 수학적으로 해석하여 전달함수의 영점이 극점보다 작게 나타남으로써 신경 조율 데이터를 이용한 기존의 연구와 일치함을 확인할 수 있었고, 제동주파수와 극점 주파수의 관계에 대한 가정들이 정당화됨을 확인할 수 있었다.

  • PDF

On the Signal Analysis of Two Waterfall Sounds in Australia's Broken Falls

  • Tian, Zhixing;Bae, MyungJin
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.287-293
    • /
    • 2020
  • More and more people are paying attention to the psychological pleasure and relaxation that sound hearing brings. In most cases, humans seem to have a special preference for natural sounds. Natural sounds are mainly white noise and pink noise such as wind, rain, waves, waterfall sounds, etc. All of these are often considered to be beneficial to human health, but in reality the same category of natural sounds is no different. It will be very different due to space, time and other factors. Each sound can be unique, so people's hearing experience is also different. This paper quantitatively analyzes the spectrum and brain waves to analyze the feeling of hearing the natural Broken Falls sound. In particular, we aim to objectively analyze the objective feeling of Broken Falls sound falling on the human auditory system through sound spectrum and brain waves.

Neuromodulation for Atrial Fibrillation Control

  • Seil Oh
    • Korean Circulation Journal
    • /
    • v.54 no.5
    • /
    • pp.223-232
    • /
    • 2024
  • Trigger and functional substrate are related to the tone of autonomic nervous system, and the role of the autonomic nerve is more significant in paroxysmal atrial fibrillation (AF) compared to non-paroxysmal AF. We have several options for neuromodulation to help to manage patients with AF. Neuromodulation targets can be divided into efferent and afferent pathways. On the efferent side, block would be an intuitive approach. However, permanent block is hard to achieve due to completeness of the procedure and reinnervation issues. Temporary block such as botulinum toxin injection into ganglionated plexi would be a possible option for post-cardiac surgery AF. Low-level subthreshold stimulation could also prevent AF, but the invasiveness of the procedure is the barrier for the general use. On the afferent side, block is also an option. Various renal denervation approaches are currently under investigation. Auditory vagus nerve stimulation is one of the representative low-level afferent stimulation methods. This technique is noninvasive and easy to apply, so it has the potential to be widely utilized if its efficacy is confirmed.

Design and Implementation of an Emotion Recognition System using Physiological Signal (생체신호를 이용한 감정인지시스템의 설계 및 구현)

  • O, Ji-Soo;Kang, Jeong-Jin;Lim, Myung-Jae;Lee, Ki-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.57-62
    • /
    • 2010
  • Recently in the mobile market, the communication technology which bases on the sense of sight, sound, and touch has been developed. However, human beings uses all five - vision, auditory, palatory, olfactory, and tactile - senses to communicate. Therefore, the current paper presents a technology which enables individuals to be aware of other people's emotions through a machinery device. This is achieved by the machine perceiving the tone of the voice, body temperature, pulse, and other biometric signals to recognize the emotion the dispatching individual is experiencing. Once the emotion is recognized, a scent is emitted to the receiving individual. A system which coordinates the emission of scent according to emotional changes is proposed.

A study on Health healing method for incite to the brain of the part of the visual nerve and auditory (3D 영상 기반에서 시각 및 청각 뇌 자극을 이용한 가상현실 건강치유기법에 관한 연구)

  • Jeong, Yang-Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.4
    • /
    • pp.233-239
    • /
    • 2008
  • This study is study regarding system implementation that a ruler maximizing an autoimmunity effect supported it as I stimulate I am visual hearing so that treatment ability is possible. As I am known in a lot of conspiracy mental problems by being disproportionate for a direct reason to be connected to an action, the brain whom emotional, govern spirits through fragrance to stimulate sense of smell so that, specially, an ARoMa treatment is effective. I will inquire into changes and an influence around alpha of the rear wave object before watching this system.

  • PDF

Teleloperation of Field Mobile Manipulator with Wearable Haptic-based Multi-Modal User Interface and Its Application to Explosive Ordnance Disposal

  • Ryu Dongseok;Hwang Chang-Soon;Kang Sungchul;Kim Munsang;Song Jae-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1864-1874
    • /
    • 2005
  • This paper describes a wearable multi-modal user interface design and its implementation for a teleoperated field robot system. Recently some teleoperated field robots are employed for hazard environment applications (e.g. rescue, explosive ordnance disposal, security). To complete these missions in outdoor environment, the robot system must have appropriate functions, accuracy and reliability. However, the more functions it has, the more difficulties occur in operation of the functions. To cope up with this problem, an effective user interface should be developed. Furthermore, the user interface is needed to be wearable for portability and prompt action. This research starts at the question: how to teleoperate the complicated slave robot easily. The main challenge is to make a simple and intuitive user interface with a wearable shape and size. This research provides multi-modalities such as visual, auditory and haptic sense. It enables an operator to control every functions of a field robot more intuitively. As a result, an EOD (explosive ordnance disposal) demonstration is conducted to verify the validity of the proposed wearable multi-modal user interface.

The Relationship between Sensory Processing Abilities and Gross and Fine Motor Capabilities of Children with Cerebral Palsy

  • Park, Myoung-Ok
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • PURPOSE: The purpose of this study was to investigate the difference and relationship between sensory processing abilities, gross motor and fine motor capabilities in children with cerebral palsy. METHODS: 104 children with cerebral palsy participated in the study. Sensory processing abilities of the subjects were measured by Short Sensory Profile (SSP). Gross and fine motor abilities were each measured using the Gross Motor Function Classification System (GMFCS) and Manual Ability Classification System (MACS), respectively. RESULTS: There were significant correlations between SSP level and GMFCS (R=.72, p<.00) or MACS (R=.77, p<.00) levels. Significant differences were showed each gross motor (p=.01) and fine motor level (p=.00) among sensory processing level of children. In addition, sub-items of sensory processing as Tactile sensitivity, Movement sensitivity, Auditory filtering and Low energy/Weak were significantly were showed significant correlations gross motor and fine motor level (p=.01). Also, multiple regression result was showed that as MACS level and GMFCS level were higher, the SSP total score was higher all of participants (adjusted $R^2=.62$). CONCLUSION: Sensory processing abilities of children with cerebral palsy were related with gross motor and fine motor capabilities. Also gross motor and fine motor capabilities are as higher, the sensory processing skill was well of cerebral palsy.

Fixed-point Optimization of a Multi-channel Digital Hearing Aid Algorithm (다중 채널 디지털 보청기 알고리즘의 고정 소수점 연산 최적화)

  • Lee, Keun Sang;Baek, Yong Hyun;Park, Young Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.37-43
    • /
    • 2009
  • In this study, multi-channel digital hearing aid algorithm for low power system is proposed. First, MDCT(Modified Discrete Cosine Transform) method converts time domain of input speech signal into frequency domain of it. Output signal from MDCT makes a group about each channel, and then each channel signal adjusts a gain using LCF(Loudness Compensation Function) table depending on hearing loss of an auditory person. Finally, compensation signal is composed by TDAC and IMDCT. Its all of process make progress 16-bit fixed-point operation. We use fast-MDCT instead of MDCT for reducing system complexity and previously computed tables instead of log computation for estimating a gain. This algorithm evaluate through computer simulation.

  • PDF

Verification of Automatic PAR Control System using DEVS Formalism (DEVS 형식론을 이용한 공항 PAR 관제 시스템 자동화 방안 검증)

  • Sung, Chang-ho;Koo, Jung;Kim, Tag-Gon;Kim, Ki-Hyung
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.1-9
    • /
    • 2012
  • This paper proposes automatic precision approach radar (PAR) control system using digital signal to increase the safety of aircraft, and discrete event systems specification (DEVS) methodology is utilized to verify the proposed system. Traditionally, a landing aircraft is controlled by the human voice of a final approach controller. However, the voice information can be missed during transmission, and pilots may also act improperly because of incorrectness of auditory signals. The proposed system enables the stable operation of the aircraft, regardless of the pilot's capability. Communicating DEVS (C-DEVS) is used to analyze and verify the behavior of the proposed system. A composed C-DEVS atomic model has overall composed discrete state sets of models, and the state sequence acquired through full state search is utilized to verify the safeness and the liveness of a system behavior. The C-DEVS model of the proposed system shows the same behavior with the traditional PAR control system.

Exploring the Use of Melody During RAS Gait Training for Adolescents with Traumatic Brain Injury: A Case Study (외상성 뇌손상 청소년 대상 리듬청각자극(RAS) 보행 훈련 시 선율 적용 사례)

  • Park, Hye Ji
    • Journal of Music and Human Behavior
    • /
    • v.12 no.2
    • /
    • pp.19-36
    • /
    • 2015
  • The purpose of this study was to examine the effects of rhythmic auditory stimulation (RAS) on gait parameters, with and without the presence of a melody, for adolescents with traumatic brain injury (TBI). Three adolescents with TBI received a total of ten individual RAS training sessions. At pre and posttest, spatiotemporal parameters including cadence, velocity and kinematic parameters were measured using the VICON 370 Motion Analysis System. The results showed no significant difference in gait velocity between the two conditions, thus the presence of the melody condition did not impact the outcome of RAS gait training. On the other hand, all participants showed improvement in gait function after RAS training. The cadence, velocity, stride length, and symmetry were increased and the stride time was reduced after training. The motion analysis demonstrated that the movement patterns of hip and knee joints improved, as they were more similar to normal gait, which indicates that the walkings tance became more stable. The research findings indicate that rhythm is the primary factor in mediating gait functions via RAS training. This study also supports that RAS training can effectively improve the gait function for adolescents with TBI.