• Title/Summary/Keyword: Au Bump

Search Result 65, Processing Time 0.022 seconds

Uncooled Microbolometer FPA Sensor with Wafer-Level Vacuum Packaging (웨이퍼 레벨 진공 패키징 비냉각형 마이크로볼로미터 열화상 센서 개발)

  • Ahn, Misook;Han, Yong-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.300-305
    • /
    • 2018
  • The uncooled microbolometer thermal sensor for low cost and mass volume was designed to target the new infrared market that includes smart device, automotive, energy management, and so on. The microbolometer sensor features 80x60 pixels low-resolution format and enables the use of wafer-level vacuum packaging (WLVP) technology. Read-out IC (ROIC) implements infrared signal detection and offset correction for fixed pattern noise (FPN) using an internal digital to analog convertor (DAC) value control function. A reliable WLVP thermal sensor was obtained with the design of lid wafer, the formation of Au80%wtSn20% eutectic solder, outgassing control and wafer to wafer bonding condition. The measurement of thermal conductance enables us to inspect the internal atmosphere condition of WLVP microbolometer sensor. The difference between the measurement value and design one is $3.6{\times}10-9$ [W/K] which indicates that thermal loss is mainly on account of floating legs. The mean time to failure (MTTF) of a WLVP thermal sensor is estimated to be about 10.2 years with a confidence level of 95 %. Reliability tests such as high temperature/low temperature, bump, vibration, etc. were also conducted. Devices were found to work properly after accelerated stress tests. A thermal camera with visible camera was developed. The thermal camera is available for non-contact temperature measurement providing an image that merged the thermal image and the visible image.

High-Speed Cu Filling into TSV and Non-PR Bumping for 3D Chip Packaging (3차원 실장용 TSV 고속 Cu 충전 및 Non-PR 범핑)

  • Hong, Sung-Chul;Kim, Won-Joong;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.49-53
    • /
    • 2011
  • High-speed Cu filling into a through-silicon-via (TSV) and simplification of bumping process by electroplating for three dimensional stacking of Si dice were investigated. The TSV was prepared on a Si wafer by deep reactive ion etching, and $SiO_2$, Ti and Au layers were coated as functional layers on the via wall. In order to increase the filling rate of Cu into the via, a periodic-pulse-reverse wave current was applied to the Si chip during electroplating. In the bumping process, Sn-3.5Ag bumping was performed on the Cu plugs without lithography process. After electroplating, the cross sections of the vias and appearance of the bumps were observed by using a field emission scanning electron microscope. As a result, voids in the Cu-plugs were produced by via blocking around via opening and at the middle of the via when the vias were plated for 60 min at -9.66 $mA/cm^2$ and -7.71 $mA/cm^2$, respectively. The Cu plug with a void or a defect led to the production of imperfect Sn-Ag bump which was formed on the Cu-plug.

Flip Chip Solder Joint Reliability of Sn-3.5Ag Solder Using Ultrasonic Bonding - Study of the interface between Si-wafer and Sn-3.5Ag solder (초음파를 이용한 Sn-3.5Ag 플립칩 접합부의 신뢰성 평가 - Si웨이퍼와 Sn-3.5Ag 솔더의 접합 계면 특성 연구)

  • Kim Jung-Mo;Kim Sook-Hwan;Jung Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.23-29
    • /
    • 2006
  • Ultrasonic soldering of Si-wafer to FR-4 PCB at ambient temperature was investigated. The UBM of Si-substrate was Cu/ Ni/ Al from top to bottom with thickness of $0.4{\mu}m,\;0.4{\mu}m$, and $0.3{\mu}m$ respectively. The pad on FR-4 PCB comprised of Au/ Ni/ Cu from top to bottom with thickness of $0.05{\mu}m,\;5{\mu}m$, and $18{\mu}m$ respectively. Sn-3.5wt%Ag foil rolled to $100{\mu}m$ was used for solder. The ultrasonic soldering time was varied from 0.5 s to 3.0 s and the ultrasonic power was 1,400 W. The experimental results show that a reliable bond by ultrasonic soldering at ambient temperature was obtained. The shear strength increased with soldering time up to a maximum of 65 N at 2.5 s. The strength decreased to 34 N at 3.0 s because cracks were generated along the intermetallic compound between Si-wafer and Sn-3.5wt%Ag solder. The Intermetallic compound produced by ultrasonic soldering between the Si-wafer and the solder was $(Cu,Ni)_{6}Sn_{5}$.

  • PDF

Study of a Low-Temperature Bonding Process for a Next-Generation Flexible Display Module Using Transverse Ultrasound (횡 초음파를 이용한 차세대 플렉시블 디스플레이 모듈 저온 접합 공정 연구)

  • Ji, Myeong-Gu;Song, Chun-Sam;Kim, Joo-Hyun;Kim, Jong-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.395-403
    • /
    • 2012
  • This is direct bonding many of the metal bumps between FPCB and HPCB substrate. By using an ultrasonic horn mounted on an ultrasonic bonding machine, it is possible to bond gold pads onto the FPCB and HPCB at room temperature without an adhesive like ACA or NCA and high heat and solder. This ultrasonic bonding technology minimizes damage to the material. The process conditions evaluated for obtaining a greater bonding strength than 0.6 kgf, which is commercially required, were 40 kHz of frequency; 0.6MPa of bonding pressure; and 0.5, 1.0, 1.5, and 2.0 s of bonding time. The peel off test was performed for evaluating bonding strength, which was found to be more than 0.80 kgf.

Reliable Anisotropic Conductive Adhesives Flip Chip on Organic Substrates For High Frequency Applications

  • Paik, Kyung-Wook;Yim, Myung-Jin;Kwon, Woon-Seong
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.04a
    • /
    • pp.35-43
    • /
    • 2001
  • Flip chip assembly on organic substrates using ACAs have received much attentions due to many advantages such as easier processing, good electrical performance, lower cost, and low temperature processing compatible with organic substrates. ACAs are generally composed of epoxy polymer resin and small amount of conductive fillers (less than 10 wt.%). As a result, ACAs have almost the same CTE values as an epoxy material itself which are higher than conventional underfill materials which contains lots of fillers. Therefore, it is necessary to lower the CTE value of ACAs to obtain more reliable flip chip assembly on organic substrates using ACAs. To modify the ACA composite materials with some amount of conductive fillers, non-conductive fillers were incorporated into ACAs. In this paper, we investigated the effect of fillers on the thermo-mechanical properties of modified ACA composite materials and the reliability of flip chip assembly on organic substrates using modified ACA composite materials. Contact resistance changes were measured during reliability tests such as thermal cycling, high humidity and temperature, and high temperature at dry condition. It was observed that reliability results were significantly affected by CTEs of ACA materials especially at the thermal cycling test. Results showed that flip chip assembly using modified ACA composites with lower CTEs and higher modulus by loading non-conducting fillers exhibited better contact resistance behavior than conventional ACAs without non-conducting fillers. Microwave model and high-frequency measurement of the ACF flip-chip interconnection was investigated using a microwave network analysis. ACF flip chip interconnection has only below 0.1nH, and very stable up to 13 GHz. Over the 13 GHz, there was significant loss because of epoxy capacitance of ACF. However, the addition of $SiO_2filler$ to the ACF lowered the dielectric constant of the ACF materials resulting in an increase of resonance frequency up to 15 GHz. Our results indicate that the electrical performance of ACF combined with electroless Wi/Au bump interconnection is comparable to that of solder joint.

  • PDF