• Title/Summary/Keyword: Atypical Formwork

Search Result 4, Processing Time 0.018 seconds

Requirement Analysis Study for Development of 3D Printing Concrete Nozzle for FCP Manufacturing (FCP 제작용 3D 프린팅 콘크리트 노즐 개발을 위한 요구사항 분석연구)

  • Youn, Jong-Young;Kim, Ji-Hye;Kim, Hye-Kwon;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.65-66
    • /
    • 2022
  • In the construction industry, interest in technologies such as 3D Construction Printing (3DCP) is increasing, and research is being conducted continuously. In the case of atypical architecture, different shapes must be implemented, and the introduction of 3D printing technology is intended to solve it. Our researchers are conducting research to produce Free-form Concrete Panel (FCP). It automatically manufactures the FCP's formwork without any error with the design shape. At this time, the concrete nozzle based on the 3D printing technology is developed and the concrete is precisely extruded into the manufactured form to prevent the deformation of the formwork that can occur due to the concrete load. Therefore, in this study, the requirements for the development of 3D printing concrete nozzles for FCP manufacturing are analyzed. Based on the analyzed requirements, the first nozzle was developed. Such equipment is easy to shorten construction period and cost reduction in the atypical construction field, and is expected to be utilized as basic 3D printing equipment.

  • PDF

Architectural Product and Formwork Manufacture using 3D Printing - Applicability Verification Through Manufacturing Factor Prediction and Experimentation - (3D 프린팅을 통한 거푸집 제조 및 건축 상품 구현 - 제조인자예측과 실험을 통한 적용가능성 검증 -)

  • Park, Jinsu;Kim, kyung taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.113-117
    • /
    • 2022
  • Additive manufacturing (AM, also known as 3D printing) technology is digitalized technology, making it easy to predict and manage quality and also, have design freedom ability. With these advantages, AM technology is applied to various industries. In particular, a method of manufacturing buildings and infrastructure with AM technology is being proposed to the construction industry. However, the application of AM technology is restricted due to problems such as insufficient history and quality of technology, lack of construction management methods, and certification of manufacturing products. Therefore, the manufacture of architectural products is implemented with indirect AM technology. In particular, it manufactures formwork using AM and injecting building materials to implement the architectural product. In this study, hybrid type material extrusion AM is used to manufacture large-sized formwork and implement building products. Moreover, we identify factors that can predict productivity and economic feasibility in the additive manufacturing process. As a result, design optimization results are proposed to reduce the production cost and time of architecture buildings.

Experimental Study on Magnetic Compaction for Reducing Bughole of Free-Form Concrete Panels (비정형 콘크리트 패널 표면 공극저감을 위한 자력 다짐 실험연구)

  • Youn, Jong-Young;Kim, Ji-Hye;Kim, Hye-Kwon;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.25-26
    • /
    • 2023
  • Free-form buildings serve as landmarks, and interest and demand are increasing. However, in the case of free-form concrete members, different curved surfaces are required depending on the location where they are used, and the formwork is custom-made and used. Concrete is poured into the manufactured formwork to produce FCP (Free-form Concrete Panel). However, since it is an atypical building that requires precise curvature, compaction cannot be performed after concrete is poured. This leads to the occurrence of bughole, which reduce the strength and aesthetics of concrete. Therefore, in this study, we intend to conduct basic experiments to develop a magnetic compaction device that can be used for FCP. As a result of the experiment, it was confirmed that the bug hole was improved when the magnetic compaction device was applied, and there was no significant difference in compressive strength and flexural strength. This technology can be used in the field of Free-form concrete where it is difficult to perform compaction work, and it is expected to be used as a basic research related to technology for new automatic compaction.

  • PDF

Development of Shrinkage Reducing Agent for 3D Printing Concrete (3D 프린팅 콘크리트용 수축저감제 개발)

  • Lee, Dong-gyu;Yoo, Byung-Hyun;Son, Ho-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.37-43
    • /
    • 2019
  • Since 3D printed concrete can be constructed without formwork, it is easy to construct an atypical structure, and the construction time and labor cost can be reduced. However, since the construction is exposed to the outside, shrinkage cracking due to moisture loss inside and outside the concrete occurs. Therefore, in order to improve the durability of the 3D printed concrete, a shrinkage reduction plan of the 3D printed concrete is required. In this study, glycol-based and alcohol-based shrinkage reducing agents were fabricated and evaluated for their performance. The shrinkage reducing agent samples showing excellent performance were selected and applied to 3D printed concrete. As a result, the compressive strength was increased by more than 10% and the shrinkage was reduced by more than 36% when using a shrinkage reducing agent. It is expected that the production of high quality 3D printed concrete will be possible because it is possible to increase the compressive strength and reduce the amount of dry shrinkage by applying a shrinkage reducing agent for 3D printed concrete.