• Title/Summary/Keyword: Attribute-based access control

Search Result 88, Processing Time 0.019 seconds

Secure Attribute-Based Access Control with a Ciphertext-Policy Attribute-Based Encryption Scheme

  • Sadikin, Rifki;Park, Young Ho;Park, Kil Houm
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • An access control system is needed to ensure only authorized users can access a sensitive resource. We propose a secure access control based on a fully secure and fine grained ciphertext-policy attribute-based encryption scheme. The access control for a sensitive resource is ensured by encrypting it with encryption algorithm from the CP-ABE scheme parameterized by an access control policy. Furthermore, the proposed access control supports non-monotone type access control policy. The ciphertext only can be recovered by users whose attributes satisfy the access control policy. We also implement and measure the performance of our proposed access control. The results of experiments show that our proposed secure access control is feasible.

A Survey of State-of-the-Art Multi-Authority Attribute Based Encryption Schemes in Cloud Environment

  • Reetu, Gupta;Priyesh, Kanungo;Nirmal, Dagdee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.145-164
    • /
    • 2023
  • Cloud computing offers a platform that is both adaptable and scalable, making it ideal for outsourcing data for sharing. Various organizations outsource their data on cloud storage servers for availing management and sharing services. When the organizations outsource the data, they lose direct control on the data. This raises the privacy and security concerns. Cryptographic encryption methods can secure the data from the intruders as well as cloud service providers. Data owners may also specify access control policies such that only the users, who satisfy the policies, can access the data. Attribute based access control techniques are more suitable for the cloud environment as they cover large number of users coming from various domains. Multi-authority attribute-based encryption (MA-ABE) technique is one of the propitious attribute based access control technique, which allows data owner to enforce access policies on encrypted data. The main aim of this paper is to comprehensively survey various state-of-the-art MA-ABE schemes to explore different features such as attribute and key management techniques, access policy structure and its expressiveness, revocation of access rights, policy updating techniques, privacy preservation techniques, fast decryption and computation outsourcing, proxy re-encryption etc. Moreover, the paper presents feature-wise comparison of all the pertinent schemes in the field. Finally, some research challenges and directions are summarized that need to be addressed in near future.

Ciphertext Policy-Attribute Based Encryption with Non Monotonic Access Structures (비단조 접근 구조를 갖는 CP-ABE 방식)

  • Sadikin, Rifki;Moon, SangJae;Park, YoungHo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.21-31
    • /
    • 2013
  • A ciphertext policy-attribute based encryption(CP-ABE) scheme can be used to realize access control mechanism without a trusted server. We propose an attribute-based access control mechanism by incorporating a CP-ABE scheme to ensure only authorized users can access the sensitive data. The idea of CP-ABE is to include access control policy in the ciphertexts, in which they can only be decrypted if a user possesses attributes that pass through the ciphertext's access structure. In this paper, we prove a secure CP-ABE scheme where the policy can be expressed in non-monotonic access structures. We further compare the performance of our scheme with the existing CP-ABE schemes.

Sharing and Privacy in PHRs: Efficient Policy Hiding and Update Attribute-based Encryption

  • Liu, Zhenhua;Ji, Jiaqi;Yin, Fangfang;Wang, Baocang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.323-342
    • /
    • 2021
  • Personal health records (PHRs) is an electronic medical system that enables patients to acquire, manage and share their health data. Nevertheless, data confidentiality and user privacy in PHRs have not been handled completely. As a fine-grained access control over health data, ciphertext-policy attribute-based encryption (CP-ABE) has an ability to guarantee data confidentiality. However, existing CP-ABE solutions for PHRs are facing some new challenges in access control, such as policy privacy disclosure and dynamic policy update. In terms of addressing these problems, we propose a privacy protection and dynamic share system (PPADS) based on CP-ABE for PHRs, which supports full policy hiding and flexible access control. In the system, attribute information of access policy is fully hidden by attribute bloom filter. Moreover, data user produces a transforming key for the PHRs Cloud to change access policy dynamically. Furthermore, relied on security analysis, PPADS is selectively secure under standard model. Finally, the performance comparisons and simulation results demonstrate that PPADS is suitable for PHRs.

A Distributed Fog-based Access Control Architecture for IoT

  • Alnefaie, Seham;Cherif, Asma;Alshehri, Suhair
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4545-4566
    • /
    • 2021
  • The evolution of IoT technology is having a significant impact on people's lives. Almost all areas of people's lives are benefiting from increased productivity and simplification made possible by this trending technology. On the downside, however, the application of IoT technology is posing some security challenges, among them, unauthorized access to IoT devices. This paper presents an Attribute-based Access Control Fog architecture that aims to achieve effective distribution, increase availability and decrease latency. In the proposed architecture, the main functional points of the Attribute-based Access Control are distributed to provide policy decision and policy information mechanisms in fog nodes, locating these functions near end nodes. To evaluate the proposed architecture, an access control engine based on the Attribute-based Access Control was built using the Balana library and simulated using EdgeCloudSim to compare it to the traditional cloud-based architecture. The experiments show that the fog-based architecture provides robust results in terms of reducing latency in making access decisions.

A Flexible Attribute-based RBAC Model

  • Kim, Si-Myeong;Han, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.131-138
    • /
    • 2022
  • In this paper, we propose an FA-RBAC (FA-RBAC) model based on flexible properties. This model is assigned attribute-role-centric, making it easy to manage objects, as efficient as access control, and as the network environment changes, it can provide flexible access control. In addition, fine-grained permissions and simple access control can be achieved while balancing the advantages and disadvantages of the RBAC and ABAC models, reducing the number of access control rules by combining static attribute-based roles and dynamic attribute-based rules, and verifying the validity and performance benefits of the proposed model through comparison analysis and simulation.

A Study of Web Access Control Based on Attribute Certificate (Attribute Certificate를 이용한 Web Access Control 연구)

  • 박재영;김동수;박세현;송오영
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2002.11a
    • /
    • pp.284-287
    • /
    • 2002
  • 본 논문에서는 제안하는 AC(Attribute Certificate)를 이용하여 Web 상에서의 권한을 제어하는 방식은 기존의 아이디/패스워드 방식의 사용자 인증보다 좀더 안전하게 사용자에 대한 권한을 관리할 수 있다. 기존의 방식은 ACL(Access Control List)를 사용하여 권한 인증을 하기 때문에 서버의 자원을 낭비하게 된다. 본 논문에서 제한하는 방식은 Web상에서의 활동 시 AC를 이용하여 사용자를 인증하게 된다. 이러한 인증을 각 서비스 제공자 사이의 AC에 대한 양식을 공유하고 권한 정보를 공유함으로써 많은 서비스 제공자 사이의 DB 문제를 해결하고 제휴된 어느 서비스 제공자에게나 사용자가 자신의 AC를 제공하여 권한을 획득할 수 있다.

  • PDF

Data Access Control Scheme Based on Blockchain and Outsourced Verifiable Attribute-Based Encryption in Edge Computing

  • Chao Ma;Xiaojun Jin;Song Luo;Yifei Wei;Xiaojun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1935-1950
    • /
    • 2023
  • The arrival of the Internet of Things and 5G technology enables users to rely on edge computing platforms to process massive data. Data sharing based on edge computing refines the efficiency of data collection and analysis, saves the communication cost of data transmission back and forth, but also causes the privacy leakage of a lot of user data. Based on attribute-based encryption and blockchain technology, we design a fine-grained access control scheme for data in edge computing, which has the characteristics of verifiability, support for outsourcing decryption and user attribute revocation. User attributes are authorized by multi-attribute authorization, and the calculation of outsourcing decryption in attribute encryption is completed by edge server, which reduces the computing cost of end users. Meanwhile, We implemented the user's attribute revocation process through the dual encryption process of attribute authority and blockchain. Compared with other schemes, our scheme can manage users' attributes more flexibly. Blockchain technology also ensures the verifiability in the process of outsourcing decryption, which reduces the space occupied by ciphertext compared with other schemes. Meanwhile, the user attribute revocation scheme realizes the dynamic management of user attribute and protects the privacy of user attribute.

A Coordinated Ciphertext Policy Attribute-based PHR Access Control with User Accountability

  • Lin, Guofeng;You, Lirong;Hu, Bing;Hong, Hanshu;Sun, Zhixin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1832-1853
    • /
    • 2018
  • The personal health record (PHR) system is a promising application that provides precise information and customized services for health care. To flexibly protect sensitive data, attribute-based encryption has been widely applied for PHR access control. However, escrow, exposure and abuse of private keys still hinder its practical application in the PHR system. In this paper, we propose a coordinated ciphertext policy attribute-based access control with user accountability (CCP-ABAC-UA) for the PHR system. Its coordinated mechanism not only effectively prevents the escrow and exposure of private keys but also accurately detects whether key abuse is taking place and identifies the traitor. We claim that CCP-ABAC-UA is a user-side lightweight scheme. Especially for PHR receivers, no bilinear pairing computation is needed to access health records, so the practical mobile PHR system can be realized. By introducing a novel provably secure construction, we prove that it is secure against selectively chosen plaintext attacks. The analysis indicates that CCP-ABAC-UA achieves better performance in terms of security and user-side computational efficiency for a PHR system.

An Efficient Attribute Certificate Management Technique for Highly Distributed Environment (고도로 분산된 컴퓨팅 환경을 위한 효율적 속성 인증서 관리 기법)

  • Yang, Soo-Mi
    • Convergence Security Journal
    • /
    • v.5 no.1
    • /
    • pp.85-92
    • /
    • 2005
  • For an efficient role based access control in highly distributed computing environment to reduce management cost, we utilize attribute certificates. Especially highly distributed computing environments such as ubiquitous computing environments which cannot have global or broad control, need another attribute certificate management technique. The techniques for transmission of the attribute certificates and management of the group keys should be considered to reduce management cost. For better performance we structure attribute certificates. We group roles and make the role group relation tree. It results secure and efficient role renewing and distribution. For scalable attribute certificate distribution, multicasting packets are used. We take into account the packet loss and quantifying performance enhancements of structuring attribute certificates.

  • PDF