본 연구에서는 지식검색을 위해 개념 속성을 이용하여 사용자 질의에 가장 적합한 정답 문장들을 검색 할 수 있는 정답검색 시스템을 설계하고 평가한다. 이 시스템은 먼저 사용자 질의를 개념 속성에 대한 불리언 연산으로 분석한 다음, 정답 문서 색인 집합에서 해당 문서들을 검색한다. 사용자는 이 검색된 문서들로부터 자신이 요구한 정답 문장들을 검색할 수 있으며, 또한 특정한 문서를 선택함으로써 그 문서에 포함된 정답 문장들을 검색할 수 있다. 이를 위해서 개념어와 속성어의 색인 단위로 색인된 정답 문서들은 각각의 문장들로 분할되어 색인된다. 그래서 분할된 문장들은 개념어와 속성어 형태로 분석되어 문서 색인 단위와의 관련 정도를 평가함으로써 정답 문장들의 위치를 색인한다. 마지막으로, 100개의 사용자 질의에 대해 정답 검색 시스템의 성능을 다양한 방법으로 평가한다.
한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
/
pp.44-49
/
2001
This paper is concerned with development of a multi-attribute structured decision model. In this study, we used AHP(analytic hierarchy process) and fuzzy set ranking methodology to overcome the multi-attributes structured decision problems ; such as multi-objective, multi-criterion, and multi-attributes. We proposed a 2-step approach : 1) individual evaluation and 2) integration of individual evaluations. In the first step, we define the performance factors and construct ana]isis structure, and in the second step performance evaluation by individual evaluators, and in second step, the results of individual evaluations are integrate. Also we developed a systematic and practical computer program to solve the problems according to the proposed methods. The proposed approach was known to be effective through a set of sample problems.
With the development of display hardware, image interpolation techniques have been used in various fields such as image zooming and medical imaging. Traditional image interpolation methods, such as bi-linear interpolation, bi-cubic interpolation and edge direction-based interpolation, perform interpolation in the spatial domain. Recently, interpolation techniques in the discrete cosine transform or wavelet domain are also proposed. Using these various existing interpolation methods and machine learning, we propose decision tree classification-based image interpolation methods. In other words, this paper is about the method of adaptively applying various existing interpolation methods, not the interpolation method itself. To obtain the decision model, we used Weka's J48 library with the C4.5 decision tree algorithm. The proposed method first constructs attribute set and select classes that means interpolation methods for classification model. And after training, interpolation is performed using different interpolation methods according to attributes characteristics. Simulation results show that the proposed method yields reasonable performance.
The conventional relational databases have difficulties to efficiently represent various of data because an attribute of a tuple should have only one elementary value. In order to represent ambiguous and imprecious information, fuzzy set and rough set have been gaining acceptance, especially as a tool for knowledge discovery in databases. One of former researches applies only one fuzzy membership value to a tuple. We suggest a more advanced model for data representation by way of applying many membership values to a tuple, i.e. one membership value to each attribute of a tuple.
러프집합을 구성하는 식별불가능 관계를 표현하는 정보시스템에서 데이터의 중복이나 비일관성은 피할 수 없기 때문에 속성의 감축은 매우 중요하다. 러프집합이론에 있어서 일관적인 정보시스템과 비일관적인 정보시스템의 속성감축의 차이를 극복하고 자, 본 연구에서는 조건 및 결정속성에 대한 상관분석에 베이지언 사후확률을 적용한 새로운 불확실성 척도와 속성감축 알고리즘을 제안한다. 정보시스템의 불확실성에 대하여 제안된 척도와 기존의 조건부 정보엔트로피 척도를 비교해 본 결과, 정보시스템의 조건속성과 결정속성의 상호정보를 이용하여 속성간의 불확실성을 측정하는데 있어 제안된 방법이 조건부 정보엔트로피에 의한 방법보다 정확성이 있음을 보여준다.
퍼지 추론은 애매한 지식을 효과적으로 처리할 수 있는 장점이 있다. 그러나 퍼지규칙의 연관속성은 규칙을 과다하게 생성하기 때문에 유용하고 중요한 규칙을 결정하는데 여러 가지 문제점이 있다. 본 논문에서는 러프집합을 적용하여 규칙간의 상관성을 고려하여 불필요한 속성을 제거하고, 퍼지 상대농도를 이용하여 추론결과의 정확성을 유지하면서 규칙의 수를 최소화 하는 방법을 제안한다. 실험결과 규칙의 개수는 감소되었으며 추론 결과가 감축하기 이전과 일치하고 규칙간의 중복성이 제거되는 것을 확인하였다.
Based on the multi-attribute utility theory (MAUT), we present a survey method to measure consumer preferences. The multi-attribute utility theory has been used to make decisions in OR/MS field; however, we show that the method can be effectively used to estimate the demand for new services by measuring individual level utility function. Because conjoint method has been widely used to measure consumer preferences for new products and services, we compare the pros and cons of two consumer preference survey methods. Further, we illustrate how swing weighing method can be effectively used to elicit customer preferences especially for new telecommunications services, Multi-attribute utility theory is a compositional approach for modeling customer preference, in which researchers calculate overall service utility by summing up the evaluation results for each attribute. On the contrary, conjoint method is a decompositional approach, which requires holistic evaluations for profiles. Partworth for each attribute is derived or estimated based on the evaluation, and finally consumer preferences for each profile are calculated. However, if the profiles are quite new and unfamiliar to the survey respondents, they will find it very difficult to accurately evaluate the profiles. We believe that the multi-attribute utility theory-based survey method is more appropriate than the conjoint method, because respondents only need to assess attribute level preferences and not holistic assessment. We chose swing weighting method among many weight assessment methods in multi-attribute utility theory, because it is designed to perform in a simple and fast manner. As illustrated in Clemen and Reilly (2001), to assess swing weights, the first step is to create the worst possible outcome as a benchmark by setting the worst level on each of the attributes. Then, each of the succeeding rows "swings" one of the attributes from worst to best. Upon constructing the swing table, respondents rank order the outcomes (rows). The next step is to rate the outcomes in which the rating for the benchmark is set to be 0 and the rating for the best outcome to be 100, and the ratings for other outcomes are determined in the ranges between 0 and 100. In calculating weight for each attribute, ratings are normalized by the total sum of all ratings. To demonstrate the applicability of the approach, we elicited and analyzed individual-level customer preference for new telecommunication services-WiBro and HSDPA. We began with a randomly selected 800 interviewees, and reduced them to 432 because other remaining ones were related to the people who did not show strong intention for subscription to new telecommunications services. For each combination of content and handset, number of responses which favored WiBro and HSDPA were counted, respectively. It was assumed that interviewee favors a specific service when expected utility is greater than that of competing service(s). Then, the market share of each service was calculated by normalizing the total number of responses which preferred each service. Holistic evaluation of new and unfamiliar service is a tough challenge for survey respondents. We have developed a simple and easy method to assess individual level preference by estimating weight of each attribute. Swing method was applied for this purpose. We believe that estimating individual level preference will be quite flexibly used to predict market performance of new services in many different business environments.
광대역 케이블 네트워크를 통해 전송되는 IPTV는 방송 매체에 관한 시청자의 요구를 처리할 수 있는 소프트웨어와 셋톱박스로 구성된 망이다. 그러나 현재 운용되고 있는 IPTV 시스템은 사용자와 CAS간 안전성 문제가 보장되어 있지 않아 보안 공격에 취약한 문제점이 있다. 이 논문에서는 사용자가 불법적으로 IPTV 서비스를 시청하는 것을 막기 위해서 STB에서 사용자의 속성 값에 따라 서비스를 제한하는 사용자 인증 프로토콜을 제안한다. 제안 프로토콜은 사용자의 속성 값을 비트 형태로 일정한 규칙에 따라 순서를 교체해서 일련의 속성 값들을 일방향 해쉬 함수와 타원곡선 Diffie-Hellman 키 교환 알고리즘에 적용함으로써 사용자 인증 및 계산 비용을 단축하고 있다. 또한 사용자는 스마트카드를 이용하여 인증 메시지를 생성하고 한 번의 등록으로 속성에 따라 다양한 서비스를 제공받을 수 있다.
본 논문은 대규모 데이터베이스에서 유용한 지식을 발견하기 위해 라프셋을 중심으로 한 통합적 방법을 제시한다. 본 방업에서는 데이터베이스에 있는 실제 데이터에서 일반화된 데이터를 추출하기 위해 속성중심의 개념계층 상승기법을 사용하고, 획득 정보량을 측정하기 위해 결정 트리에 의한 귀납법을 사용한다. 그리고 불필요한 속성 및 속성값을 제거하기 위해 라프셋 이론의 지식감축 방법을 적용한다. 통합 알고리즘은 먼저, 개념의 일반화에 의해 데이터베이스의 크기를 줄이고, 다음으로 결정속성에 영향을 적게 미치는 조건속성을 제거함으로써 속성의 수를 줄인다. 마지막으로 속성간의 종속관계를 분석함으로써 불필요한 속성값을 제거하여 간략화된 결정규칙을 유도한다.
This paper presents a system of handwritten numerals recognition, which is based on Ant-miner algorithm (data mining based on Ant colony optimization). At the beginning, three distinct fractures (also called attributes) of each numeral are extracted. The attributes are Loop zones, End points, and Feature codes. After these data are extracted, the attributes are in the form of attribute = value (eg. End point10 = true). The extraction is started by dividing the numeral into 12 zones. The numbers 1-12 are referenced for each zone. The possible values of Loop zone attribute in each zone are "true" and "false". The meaning of "true" is that the zone contains the loop of the numeral. The Endpoint attribute being "true" means that this zone contains the end point of the numeral. There are 24 attributes now. The Feature code attribute tells us how many lines of a numeral are passed by the referenced line. There are 7 referenced lines used in this experiment. The total attributes are 31. All attributes are used for construction of the classification rules by the Ant-miner algorithm in order to classify 10 numerals. The Ant-miner algorithm is adapted with a little change in this experiment for a better recognition rate. The results showed the system can recognize all of the training set (a thousand items of data from 50 people). When the unseen data is tested from 10 people, the recognition rate is 98 %.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.