• Title/Summary/Keyword: Attitude Determination System

Search Result 99, Processing Time 0.034 seconds

Initial Alignment Algorithm for the SDINS Using an Attitude Determination GPS Receiver (자세 측정용 GPS 수신기를 이용한 SDINS의 초기정렬 알고리즘)

  • Kim, Young-Sun;Oh, Sang-Heon;Hwang, Dong-Hwan;Lee, Sang-Jeong;Jeon, Chang-Bae;Song, Ki-Won;Park, Chan-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.249-255
    • /
    • 2002
  • Since the stationary alignment process of the SDINS is not completely observable, some furls of the aided alignment have been applied. The purpose of this paper is to propose a new initial alignment algorithm, which utilizes the attitude output from the AGPS(Attitude Determination GPS) receiver and to demonstrate the feasibility of the proposed algorithm with several experimental results. A Kalman filter is designed for utilizing the attitude output as well as the zero velocity information. Also analyzed is the observability of the SDINS error model. To show the feasibility of the proposed scheme, we implement an alignment system where HG1700AE IMU (Inertial Measurement Unit) from Honeywell and an AGPS receiver designed at Chungnam National University are used. Test trials are done to evaluate the performance of the proposed alignment scheme. The proposed algorithm provides as good initial alignment performance as a high accurate navigation system, MAPS(Modular Azimuth Positioning System) INS.

ATTITUDE DETERMINATION AND CONTROL SYSTEM OF KITSAT-1 (우리별 1호의 자세제어 시스템)

  • 이현우;김병진;박동조
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.67-81
    • /
    • 1996
  • The attitude dynamics of KITSAT-1 are modeled including the gravity gradient stabilization method. We define the operation scenario during the initial attitude stabilization period by means of a magnetorquering control algorithm. The required constraints for the gravity gradient boom deployment are also examined. Attitude dynamics model and control laws are verified by analyzing in-orbit attitude sensor telemetry data.

  • PDF

Engineering Realization of Full Attitude System Based On GPS Carrier Phase and MEMS IMU

  • Tang, Kanghua;Wu, Meiping;Hu, Xiaoping
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.271-275
    • /
    • 2006
  • This paper describes the design and realization of full attitude system based on MEMS IMU and GPS carrier phase. The work can be divided into two parts: First, initial heading is determined by using two GPS receivers. And this paper discusses the usage of space geometry conditions to reduce the range of ambiguity search. The method presented in this paper was tested on the static. On the static condition, an accuracy better than 0.06 degrees for heading for 3.48m long baseline has been achieved. Integration of GPS and low cost MEMS IMU are used to realize the real-time heading attitude system. Second, level attitude (pitch and roll) is determined using the method of frequency-velocity for the feedback control. At the same time, the method using the attitude based on MEMS IMU to help determination of the range of ambiguity search is proposed. The results done on the sea show that an alternative means to provide real-time, cost-effective, accurate and reliable attitude information for attitude surveys. Though motivated by a big ships application, the design can be applied to other vehicles.

  • PDF

Attitude Determination GPS/INS Integrated Navigation System with FDI Algorithm for a UAV

  • Oh Sang Heon;Hwang Dong-Hwan;Park Chansik;Lee Sang Jeong;Kim Se Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1529-1543
    • /
    • 2005
  • Recently an unmanned aerial vehicle (UAV) has been widely used for military and civil applications. The role of a navigation system in the UAV is to provide navigation data to the flight control computer (FCC) for guidance and control. Since performance of the FCC is highly reliant on the navigation data, a fault in the navigation system may lead to a disastrous failure of the whole UAV. Therefore, the navigation system should possess a fault detection and isolation (FDI) algorithm. This paper proposes an attitude determination GPS/INS integrated navigation system with an FDI algorithm for a UAV. Hardware for the proposed navigation system has been developed. The developed hardware comprises a commercial inertial measurement unit (IMU) and the integrated navigation package (INP) which includes an attitude determination GPS (ADGPS) receiver and a navigation computer unit (NCU). The navigation algorithm was implemented in a real-time operating system with a multi-tasking structure. To evaluate performance of the proposed navigation system, a flight test has been performed using a small aircraft. The test results show that the proposed navigation system can give accurate navigation results even in a high dynamic environment.

Attitude and Dynamics Position Determination Analysis with the combined GPS/IMU (GPS/IMU 결합에 의한 자세 및 동적 위치 결정 분석)

  • 백기석;박운용;이종출;차성렬
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.117-121
    • /
    • 2004
  • In this paper, the error compensation method of the low-cost IMU is proposed. In general, the position and attitude error calculated by accelerometers and gyros grows with time. Therefore the additional information is required to compensate the drift. The attitude angles can be bound accelerometer mixing algorithm and the heading angle can be aided by single antenna GPS velocity. The Kalman filter is used for error compensation. The result is verified by comparing with the attitude calculated and dynamics position determination by Attitude Heading Reference System with Micro Electro Mechanical System for a basis

  • PDF

GPS Carrier Multipath Estimation While Attitude Determination (자세결정시의 GPS 반송파 다중경로 오차 추정)

  • Lee, Eun-Sung;Chun, Se-Bum;Lee, Young-Jea;Kang, Tea-Sam;Jee, Gyu-In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.65-70
    • /
    • 2005
  • Incorrect ambiguity integer of GPS make a large error on attitude determination. In this paper one method is suggested for estimating the multipath of GPS carrier measurement while attitude determination. The multi-antenna system consists of 4 antennas have the same clock error help to make attitude determination effectively. If the distance between antennas is a half wavelength, it is not necessary to search the ambiguity integer and the multipath of GPS carrier measurement can be estimated. The results of the simulation are shown and analyzed.

Error Assessment of Attitude Determination Using Wireless Internet-Based DGPS (무선인터넷기반의 DGPS를 이용한 동체의 자세결정 성능평가)

  • Lee Hong Shik;Lim Sam Sung;Park Jun Ku
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • Inertial Navigation System has been used extensively to determine the position, velocity and attitude of the body. An INS is very expensive, however, heavy, power intensive, requires long setting times and the accuracy of the system is degraded as time passed due to the accumulated error. Global Positioning System(GPS) receivers can compensate for the Inertial Navigation System with the ability to provide both absolute position and attitude. This study describes a method to improve both the accuracy of a body positioning and the precision of an attitude determination using GPS antenna array. Existing attitude determination methods using low-cost GPS receivers focused on the relative vectors between the master and the slave antennas. Then the positioning of the master antenna is determined in meter-level because the single point positioning with pseudorange measurements is used. To obtain a better positioning accuracy of the body in this research, a wireless internet is used as an alternative data link for the real-time differential corrections and dual-frequency GPS receivers which is expected to be inexpensive was used. The numerical results show that this system has the centimeter level accuracy in positioning and the degree level accuracy in attitude.

The Study for attitude determination and heading production using AHRS (AHRS을 이용한 자세결정과 Heading 산출을 위한 연구)

  • 백기석;박운용;차성렬;홍순헌
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.59-64
    • /
    • 2004
  • In this paper, the error compensation method of the low-cost IMU is proposed. In general, the position and attitude error calculated by accelerometers and gyros grows with time. Therefore the additional information is required to compensate the drift. The attitude angles can be bound accelerometer mixing algorithm and the heading angle can be aided by single antenna GPS velocity. The Kalman filter is used for error compensation. The result is verified by comparing with the attitude calculated by Attitude Heading Reference System with Micro Electro Mechanical System for a basis

  • PDF

Attitude Determination Technique using Ultrasound and RF Signal (초음파와 RF를 이용한 자세결정)

  • Kim, Seung-Beom;Kang, Dong-Youn;Yun, Hee-Hak;Lee, Geon-Woo;Lee, Sang-Jeong;Park, Chan-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.1025-1031
    • /
    • 2007
  • GPS is widely used for positioning applications and attitude of a vehicle can be found also with multiple antennas. However, extremely weak signal level prevents GPS from indoor operation. DR with accelerometers and gyros and landmark based localization method used for indoor applications increase complexity and cost. In this paper, a simple but very efficient ultrasound based attitude determination system which determines both position and attitude in WSN is given. The range between transmitter and receivers are measured using the arrival time difference between ultrasound and RF signal. The 3 dimensional positions can be found using more than 3 range measurements. Furthermore, if more than 2 transmitters are used, the attitude can be determined using the baseline vectors obtained by differencing transmitter and receiver positions. The prototype system is implemented to evaluate the performance of the proposed method. In addition, an error analysis shows the relation between the attitude error and basel me length, quality of measurement and orientation of a vehicle. The static and dynamic experiments performed by micro mobile robot shows accurate position with less than 1.5cm error and attitude with less than 1 degree error can be obtained continuously with 20cm baseline. It is expected that these results can be adapted without modification to indoor applications such as home cleaning robot and autonomous wheelchair maneuvering.

Scalar Adaptive Kalman Filtering for Stellar Inertia! Attitude Determination

  • Jung, Jae-Woo;Cho, Yun-Cheol;Bang, Hyo-Choong;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.88-94
    • /
    • 2002
  • This paper describes attitude determination algorithm for the low earth orbit(LEO) spacecraft using stellar inertial sensors. The cascaded gyro/star tracker extended Kalman filter is constructed to fuse two sensor data. And then the smoothing of the measurement are proposed for an unreasonable jump of star tracker. The smoothing algorithm for the rejection of star tracker error jumps is designed by scalar adaptive filter. The proposed algorithms operate to process the measurement of gyro/star tracker Kalman filter, therefore, it is comparatively simple to apply these methods to other integration systems. Simulations to gyro/star tracker integrated system show that the proposed method is effective.