• Title/Summary/Keyword: Attitude Angle

Search Result 282, Processing Time 0.025 seconds

The Influence of Adolescent's Scoliosis on Stress and Study-attitude (청소년의 척추측만증이 스트레스 및 학습태도에 미치는 영향)

  • Hong, Eun-Jeong;Cho, Sung-Hyun;HwangBo, Kak
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.1
    • /
    • pp.15-21
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the influence of adolescent's scoliosis on the stress level and study-attitude, to inform the public that there exist an important correlation between adolescent's scoliosis and stress, as well as, study-attitude, using a questionnaire. Methods: For this study, questionnaires were distributed to elementary school in G city from May 10 through May 31, 2011. This study measured a primary scoliosis-test by a scoliometer with 300 elementary school students and a secondary test by Cobb's angle using an X-ray. The subjects were divided into 2 groups (normal group (n=20), scoliosis group (n=20)). The collected data were analyzed by a t-test and Pearson analysis. Results: As a result of this study, the Cobb's angle showed significant difference between the scoliosis group and the normal group (p<0.001). Also, it tended to have a greater stress level in the scoliosis group than the relationship between scoliosis and the stress or study-attitude compared to the normal group (p<0.05). The correlation of stress according to Cobb's angle showed a positive relationship (r=0.36), and the correlation of study-attitude to Cobb's angle showed a negative relationship (r=-0.04). Conclusion: In conclusion, this study showed that scoliosis affects stress and study-attitude. We hope that this result would help diagnose adolescent's scoliosis in anearly stage and prevent any phychologic and social problems relating to it.

Magnetic attitude control of a satellite (지자기를 이용한 위성체의 자세제어)

  • 엄광섭;박동조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.159-164
    • /
    • 1992
  • In this paper, the complex nonlinear dynamics of a satellite is obtained. And it is shown that several limitations exist when the magnetorquer is used as an active actuator to attitude control. Such limitations cause a delayed convergence of pitch and roll angle. The simulation results insure that the roll angle bias is dependent on the z axis spin rate. And a heuristic algorithm is applied to control the attitude libration through the computer simulations.

  • PDF

Nonlinear Rotating Flows in Eccentric Cylinders (편심환내의 비선형 회전 유동)

  • Sim, U-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.16-28
    • /
    • 2000
  • The steady rotating flows in eccentric annulus has been studied by a numerical method based on the spectral collocation method. The inner cylinder has a constant angular velocity while the outer on e is stationary. Flow between eccentric cylinders is of considerable technical importance as it occurs in journal bearings. In the present work, the governing equations for laminar flow are expressed as Navier-Stokes equations, including the non-linear convection terms. The solutions were utilized i, estimate the effects of the nonlinear terms on the load acting on the rotating cylinder. Based on the half and the full Sommerfeld methods, the load on the rotating cylinder is evaluated with eccentricity, by integrating the pressure and skin friction around the cylinder. The attitude angle and Sommerfeld reciprocal are calculated from the load. Also, the torque on the rotating inner cylinder was calculated. considering the skin friction. The attitude angle and Sommerfeld reciprocal are decreased with eccentricity. Viscous damping coefficient due to the skin friction becomes larger with decreasing the annular space. It is found the non-linear effects of the convection terms on the flow and the load are important. especially on the attitude angle, for relatively wide annular configurations however, the effects on those are minor for very narrow annular ones.

Error Analysis of 3-Dimensional GPS Attitude Determination System

  • Park Chan-Sik;Cho Deuk-Jae;Cha Eun-Jong;Hwang Dong-Hwan;Lee Sang-Jeong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.480-485
    • /
    • 2006
  • In this paper, the error investigation of a 3-dimensional GPS attitude determination system using the error covariance analysis is given. New efficient formulas for computing the Euler Angle Dilution of Precision (EADOP) are also derived. The formulas are easy to compute and represent the attitude error as a function of the nominal attitude of a vehicle, the baseline configuration and the receiver noise. Using the formula, the accuracy of the Euler angle can be analytically predicted without the use of computer simulations. Applications to some configurations reveal the effectiveness of the proposed method.

SATELLITE ATTITUDE SENSING MODEL AND THEIR S/W DEVELOPMENT (인공위성 자세감지 모델과 그 S/W 개발)

  • 김영신;안웅영;김천휘
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.69-78
    • /
    • 1999
  • We have developed an attitude sensing S/W system, one of modules of Mission Analysis System(MAS), which simulates attitude sensing data as almost the same as the real sensor of a satellite in orbit. When attitude elements($alpha,delta$) of a satellite and positions of Earth, Moon, and Sun are given, the S/W system calculates look angles and dihedral angles of each celestial bodies relative to the rotations axis of the satellite. It consists of two sub-modules : One is ephemeris service module which consider the perturbations of four planets(Venus, Mars, Jupiter, Saturn) for positions of Sun and Moon and 4 $\times$4 earth gravitational potential terms for a satellite's position. The other is attitude simulation module which generates attitude sensing data. Varying the rotational axis of a satellite and it's orbital elements, we simulated the generating attitude sensing data with this S/W system and discussed their results.

  • PDF

Development of 3-Dimensional Position/Attitude Determination Radio-navigation System with FLAOA and TOA Measurements

  • Jeon, Jong-Hwa;Lim, Jeong-Min;Yoo, Sang-Hoon;Sung, Tae-Kyung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.2
    • /
    • pp.61-71
    • /
    • 2018
  • Existing radio positioning systems have a drawback that the attitude of user's tag is difficult to be determined. Although forward link angle of arrival (FLAOA) technology that uses measurements of array antenna arranged in a tag among the angle of arrival (AOA) technologies can estimate attitude and positioning of tags, it cannot extend the estimated results into three-dimensional (3D) results due to complex non-linear model displayed because of the effects of 3D positioning and attitude in tags. This paper proposed a radio navigation technique that determines 3D attitude and positioning via FLAOA / time of arrival (TOA) integration. According to the order of determining attitude and positioning, two integration techniques were proposed. To analyze the performance of the proposed technique, MATLAB-based simulations were used to verify the performance. The simulation results showed that the first proposed method, TOA-FLAOA integrated technique, showed about 0.15 m of positioning error, and $2-3^{\circ}$ of attitude error performances regardless of the positioning space size whereas the second method, differenced FLAOA-TOA integrated technique, revealed a problem that a positioning error became larger as the size of the positioning space became larger.

Attitude control in spacecraft orbit-raising using a reduced quaternion model

  • Yang, Yaguang
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.427-441
    • /
    • 2014
  • Orbit-raising is an important step to place spacecraft from parking orbits into working orbits. Attitude control system design is crucial in the success of orbit-raising. Several text books have discussed this design and focused mainly on the traditional methods based on single-input single-output (SISO) transfer function models. These models are not good representations for many orbit-raising control systems which have multiple thrusters and each thruster has impact on the attitude defined by all outputs. Only one published article is known to use a more suitable multi-input multi-output (MIMO) Euler angle model in spacecraft orbit-raising attitude control system design. In this paper, a quaternion based MIMO model for the orbit-raising attitude control system design is proposed. The advantages of using quaternion based model for orbit-raising control system designs are (a) there is no need for mathematical transformations because the attitude measurements are normally given by quaternion, (b) quaternion based model does not depend on rotational sequences, which reduces the chance of human errors, and (c) the singular point of reduced quaternion model is the farthest from the operational point where linearization is performed. We will show that performance of quaternion model based design will be as good as the performance of Euler angle model based design for orbit-raising problem.

Tractor Implement Attitude Control System Using Microcomputer (마이크로컴퓨터를 이용(利用)한 트랙터 작업기(作業機)의 자세제어(姿勢制御) 시스템에 관한 연구(硏究))

  • Yoo, S.N.;Suh, S.R.;Kim, D.J.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.199-208
    • /
    • 1993
  • This study was attempted to develop the eletronic-hydraulic hitch system for controlling the attitude of tractor implements and to investigate control performance of the system through experiments. Main components of the system developed in this study were reference inputs panel, inclination angle detecter, electronic controller consisted of IBM-AT PC and interfaces, electro-hydraulic directional valves and other hydraulic components and three-point hitch linkage. Experiments were carried out to investigate the response of the system to the step and sine inputs. The effects of hydraulic flow rate and dead band on control performance were analized. Attitude of the implement was controlled within 2.4-5.1 degrees to the setting attitude when the hydraulic flow rate was in the range of $0.25-1.5{\ell}/min$. And implement was controlled without rapid amplitude attenuation and phase angle change in the frequency range of 0.02-0.2Hz when the hydraulic flow rate was in the range of $0.25-1.5{\ell}/min$. Control performance of the system can be expected to be improved if the inclination angle detecter show rapid and stable output as the implement moves.

  • PDF

Sliding Mode Trim and Attitude Control of a 2-00F Rigid-Rotor Helicopter Model

  • Jeong, Heon-Sul;Chang, Se-Myong;Park, Jin-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.23-32
    • /
    • 2005
  • An experimental control system is proposed for the attitude control of a simplified 2-DOF helicopter model. The main rotor is a rigid one, and the fuselage is simply supported by a fixed hinge point where the longitudinal motion is decoupled from the lateral one since the translations and the rolling rotation are completely removed. The yaw trim of the helicopter is performed with a tail rotor, by which the azimuthal attitude can be adjusted on the rotatable post in the yaw direction. The robust sliding mode control tracking a given attitude angle is proposed based on the flight dynamics. A pitch damper is inserted for the control of pitching angle while the compensator to reaction torque is used for the control of azimuth angle. Several parameters of the system are selected through experiments. The results shows that the proposed control method effectively counteracts nonlinear perturbations such as main rotor disturbance, undesirable chattering, and high frequency dynamics.

Integrator initial value selection in the guidance laws for attitude controlled missile (자세제어방식 유도탄에 대한 유도법칙의 적분기 초기치 선정)

  • 윤원식;류창경;조항주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.450-455
    • /
    • 1993
  • Guidance commands for attitude controlled missiles inevitably take the form of attitude angle commands. On the other hand, many guidance laws compute the accelerations required to achieve their goals. Therefore some integrators must be in use for the attitude controlled missiles to implement the guidance laws. Naturally, the use of the integrator raises the problem of choosing a proper initial value. In this paper, we compute the integrator initial value which minimizes the terminal miss and show that if the total flight time of the mission is long enough, the "optimal" initial value becomes some multiple of the initial heading error or of the given impact angle to the target. We demonstrate the validity of the analysis by showing some linear and nonlinear simulation results.n results.

  • PDF