• Title/Summary/Keyword: Attitude Angle

Search Result 282, Processing Time 0.022 seconds

A Model Test Study on the Effect of the Stern Interceptor for the Reduction of the Resistance and Trim Angle for Wave-piercing Hulls (파랑관통형 선형의 저항 및 트림각 감소를 위한 선미 인터셉터 부착효과에 관한 모형시험 연구)

  • Kim, Dae Hyuk;Seo, Inn-Duk;Rhee, Key-Pyo;Kim, Nakwan;Ahn, Jin-Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.485-493
    • /
    • 2015
  • Planing hull form is widely used as a high speed vessel hull. There is a problem of the planing hull not solved yet. The problem is that the planing hull has very large vertical acceleration and large heave and pitch motions. As one method for overcoming this problem, there is "wave-piercing hull". Before the motion in waves is investigated, the resistance and running attitude must be investigated. In this paper, the running attitude and resistance of two wave-piercing hulls are investigated by model tests. Model test results show that the wave-piercing hulls have large trim angle and sinkage at the high speed, so additional model tests are conducted by using the hull appended by stern interceptor that is very thin plate to increase the hydrodynamic pressure at the attached location. The results are compared with other planing hulls and the resistance components and the hydrodynamic force are discussed. From the model test results, it can be known that the stern interceptor is the effective appendage for the reduction of the resistance and trim angle of wave-piercing hull.

Experimental Analysis of Towing Attitude for I-type and Y-type Tail Fin of Active Towed SONAR (I 형 및 Y 형 꼬리 날개 능동 예인 음탐기의 예인 자세에 대한 실험적 분석)

  • Lee, Dong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.579-585
    • /
    • 2019
  • Increasing the detection probability of underwater targets necessitates securing the towing stability of the active towed SONAR. In this paper, to confirm the effects of tail wing fin on towing attitude and towing stability, two scale model experiments and one sea trials were conducted and the results were analyzed. The scale model tests measured the towing behavior of each of the tail fin shapes according to towing speed in a towing tank. The shape of the tail fin used in the scale model test was tested with an I-type tail fine and four Y-type tail fins, totaling five tail fins of the two kinds. The first scale model test confirmed that the Y-type tail fin was superior to the I-type tail fin in towing attitude and towing stability. The second scale model test confirmed the characteristics of the vertical tail fin height increase and the lower horizontal tail fin inclination angle application shape based on the Y-type tail fin. The shape of the application of the lower horizontal tail fin inclination angle showed the best performance. In order to verify the results of the scale model test, a full size model was constructed, sea trials were performed, and the towing attitude was measured. The results were similar to those of the scale model test.

A Forward Link ADA Positioning method for mobile Robots (이동 로봇을 위한 순방향 링크 AOA 측위 방법)

  • Kim, Dong-Hyouk;Song, Seung-Hun;Roh, Gi-Hong;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.603-608
    • /
    • 2007
  • In the conventional AOA(angle-of-arrival) positioning utilizing reverse-link wireless channel, each sensor should be equipped with an array antenna to measure the incident angle of signal transmitting from a tag. To perform the complicated signal processing for angle measurements, sensor size and its power consumption will be large. In some applications like mobile robot location, there exists no strict restriction in tag size or in power consumption. Rather, it is desirable that the sensor would be as small as possible. This paper presents a new AOA positioning method utilizing forward-link channel. Under the assumption that the mobile robot is operating on the flat surface, the measurement model for FLAOA(tiJrward-link AOA) is derived first. Two kinds of position estimation algorithms using FLAOA measurements are proposed; Gauss-Newton method and closed-fonn solution method. With the proposed methods, we can ohtain the attitude of robot as well as its position. Positioning performance of proposed methods is compared by computer simulation. Simulation results show that the closed-form solution method using FLAOA measurements is suitable for indoor robot positioning.

Measurement Method of Airburst Height Using the Approach Angle (비행체 진입각을 이용한 공중 폭발고도 계측 방법)

  • Kim, Jinho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.497-504
    • /
    • 2017
  • This paper proposes a method to measure the airburst height by utilizing a high speed camera. This method might be applied to the test of which flight target is alive after the burst. The proposed method consists of four main steps. The first step is to compute the impact point using the sea surface height. The second step is to compute the height of burst (HOB) by using the distance from the camera to the impact point. This could be different from the real explosion height. That is because the distance from the camera to the burst point is not the same as it from the camera to the impact point. Therefore, the third step is to calculate the approach angle of the flight target with respect to the installed camera. Then, the last step is to compensate the computed height by using the approach angle. The result of the proposed method is compared with it from the triangulation. In this paper, the HOB error is also analyzed regarding the approach angle difference. Based on this analysis, the camera position might be suggested for error reduction.

An analysis on the Earth geoid surface variation effect for use of the tilt sensor in celestial navigation system

  • Suk, Byong-Suk;Yoon, Jae-Cheol;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1867-1870
    • /
    • 2005
  • The celestial navigation is one of alternatives to GPS system and can be used as a backup of GPS. In the celestial navigation system using more than two star trackers, the vehicle's ground position can be solved based on the star trackers' attitude information if the vehicle's local vertical or horizontal angle is given. In order to determine accurate ground position of flight vehicle, the high accurate local vertical angle measurement is one of the most important factors for navigation performance. In this paper, the Earth geophysical deflection was analyzed in the assumption of using the modern electrolyte tilt sensor as a local vertical sensor for celestial navigation system. According to the tilt sensor principle, the sensor measures the tilt angle from gravity direction which depends on the Earth geoid surface at a given position. In order to determine the local vertical angle from tilt sensor measurement, the relationship between the direction of gravity and the direction of the Earth center should be analyzed. Using a precision orbit determination software which includes the JGM-3 Earth geoid model, the direction of the Earth center and the direction of gravity are extracted and analyzed. Appling vector inner product and cross product to the both extracted vectors, the magnitude and phase of deflection angle between the direction of gravity and the direction of the Earth center are achieved successfully. And the result shows that the angle differences vary as a function of latitude and altitude. The maximum 0.094$^{circ}$angle difference occurs at 45$^{circ}$latitude in case of 1000 Km altitude condition.

  • PDF

Attitude Error Detection with Sun sensor on a Rotating Solar Array (회전하는 태양전지판에 장착된 태양센서를 이용한 자세오류 감지)

  • Oh, Shi-Hwan
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • Generally, satellites continuously monitor that its major functions are working properly and their hardware are in a good status using several SOH data. In case a fault that is not recognized as a temporal problem or a failure that can be considered to propagate its damage to the other parts are detected, fault management logic is performed automatically without any contact of ground station. In this paper, attitude error detection using sun sensors on a rotating solar array is proposed. Attitude error can be detected by comparing the offset angle between the actual data computed from the sun sensor and the data predicted from the orbit and ephemeris information for the two types of solar array operation method. During the eclipse, the output of attitude error detection method becomes zero because the sun sensor output cannot be provided. Finally, the proposed method is analyzed through the data processing using on-orbit data.

Attitude Control of Quad-rotor by Improving the Reliability of Multi-Sensor System (다종 센서 융합의 신뢰성 향상을 통한 쿼드로터 자세 제어)

  • Yu, Dong Hyeon;Park, Jong Ho;Ryu, Ji Hyoung;Chong, Kil To
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.517-526
    • /
    • 2015
  • This paper presents the results of study for improving the reliability of quadrotor attitude control by applying a multi-sensor along with a data fusion algorithm. First, a mathematical model of the quadrotor dynamics was developed. Then, using the quadrotor mathematical model, simulations were performed using the improved reliability multi-sensor data as the inputs. From the simulation results, we designed a Gimbal-equipped quadrotor system. With the quadrotor in a hover state, we performed experiments according to the angle change of the user's specifications. We then calculated the attitude control data from the actual experimental data. Furthermore, with additional simulations, we verified the performance of the designed quadrotor attitude control system with multiple sensors.

Robust Adaptive Nonlinear Control for Tilt-Rotor UAV

  • Yun, Han-Soo;Ha, Cheol-Keun;Kim, Byoung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.57-62
    • /
    • 2004
  • This paper deals with a waypoint trajectory following problem for the tilt-rotor UAV under development in Korea (TR-KUAV). In this problem, dynamic model inversion based on the linearized model and Sigma-Phi neural network with adaptive weight update are involved to realize the waypoint following algorithm for the vehicle in the helicopter flight mode (nacelle angle=0 deg). This algorithms consists of two main parts: outer-loop system as a command generator and inner-loop system as stabilizing controller. In this waypoint following problem, the position information in the inertial axis is given to the outer-loop system. From this information, Attitude Command/Attitude Hold logic in the longitudinal channel and Rate Command/Attitude Hold logic in the lateral channel are realized in the inner-loop part of the overall structure of the waypoint following algorithm. The nonlinear simulation based on the TR-KUAV is carried out to evaluate the stability and performance of the algorithm. From the numerical simulation results, the algorithm shows very good tracking performance of passing the waypoints given. Especially, it is observed that ACAH/RCAH logic in the inner-loop has the satisfactory performance due to adaptive neural network in spite of the model error coming from the linear model based inversion.

  • PDF

A Study on Modular Agricultural Robotic Platform for Upland (밭 노지 환경 주행을 위한 모듈형 농업 로봇 플랫폼에 대한 연구)

  • Cho, Yongjun;Woo, Seong Yong;Song, Su Hwan;Hong, Hyung Gil;Yun, Haeyong;Oh, Jang Seok;Kim, Junseong;Kim, Dong Woo;Seo, Kab Ho;Kim, Dae Hee
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.124-130
    • /
    • 2020
  • This paper designed modular agricultural robotic platform capable of a variety of agricultural tasks to address the problems caused by a decline in agricultural populations and an increase in average age. We propose a modular robotic platform that can perform many tasks required in field farming by replacing only work modules with common robotic platforms. This platform is capable of steering while driving on four wheels in an upland environment where farm work is performed, and an attitude control module is attached to each drive module to control the attitude of the platform. In addition, the width of the platform is designed to be variable in order to operate in various ridges according to the crop cultivation method. Finally, we evaluated five items: variable width, gradient, attitude control angle, step and road speed in order to carry out the farming industry while maintaining a stable posture.

The Effect of Appendages of a Water-Jet Propelled High Speed Vessel on the Course Keeping Ability (워터젯 추진 고속선의 부가물이 침로안정성에 미치는 영향)

  • Park, Han-Sol;Kim, Dong-Jin;Lee, Sung-Kyun;Park, Jong-Yong;Rhee, Key-Pyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.357-362
    • /
    • 2011
  • It has been often reported that a water-jet propelled high speed vessel lost the course keeping ability in seaway. In this study, model tests of a high speed vessel were performed to measure the running attitude and to check the course keeping ability. The model ship may lose the course keeping ability due to bad running attitudes such as bow drop. So model tests were carried out to improve the running attitude by changing the position of longitudinal center of gravity and using appendages at the bow and the stern of a model. The position of lateral center of pressure moved toward stern and the course keeping ability was improved by modifying the transom wedge angle.