• 제목/요약/키워드: Attenuation factors method

검색결과 52건 처리시간 0.025초

Calibration of cylindrical NaI(Tl) gamma-ray detector intended for truncated conical radioactive source

  • Badawi, Mohamed S.;Thabet, Abouzeid A.
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1421-1430
    • /
    • 2022
  • The computation of the solid angle and the detector efficiency is considering to be one of the most important factors during the measuring process for the radioactivity, especially the cylindrical γ-ray NaI(Tl) detectors nowadays have applications in several fields such as industry, hazardous for health, the gamma-ray radiation detectors grow to be the main essential instruments in radiation protection sector. In the present work, a generic numerical simulation method (NSM) for calculating the efficiency of the γ-ray spectrometry setup is established. The formulas are suitable for any type of source-to-detector shape and can be valuable to determine the full-energy peak and the total efficiencies and P/T ratio of cylindrical γ-ray NaI(Tl) detector setup concerning the truncated conical radioactive source. This methodology is based on estimate the path length of γ-ray radiation inside the detector active medium, inside the source itself, and the self-attenuation correction factors, which typically use to correct the sample attenuation of the original geometry source. The calculations can be completed in general by using extra reasonable and complicate analytical and numerical techniques than the standard models; especially the effective solid angle, and the detector efficiency have to be calculated in case of the truncated conical radioactive source studied condition. Moreover, the (NSM) can be used for the straight calculations of the γ-ray detector efficiency after the computation of improvement that need in the case of γ-γ coincidence summing (CS). The (NSM) confirmation of the development created by the efficiency transfer method has been achieved by comparing the results of the measuring truncated conical radioactive source with certified nuclide activities with the γ-ray NaI(Tl) detector, and a good agreement was obtained after corrections of (CS). The methodology can be unlimited to find the theoretical efficiencies and modifications equivalent to any geometry by essential sufficiently the physical selective considered situation.

Evaluation of communication reliability of a test-bed networked to the home appliances with PLC modems for the Internet accessed home automation

  • Ahn, Nam-Ho;Chang, Tae-Gyu;Kim, Hoon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.591-594
    • /
    • 2002
  • This paper presents a systematic method of probing channel characteristics and communication reliabilities of home power line communication network applied to the Internet accessed control of home appliances. The effects of the three performance deteriorating factors, i.e., additive noise, channel attenuation, and intersymbol interference, can be systematically measured by applying the channel probing waveform in the frequency range from 100㎑ to 450㎑. Probability of bit error is derived with the probed channel parameters of the signal attenuation, noise and signal-to-interference ratio read in the frequency domain. The agreement between the derived probability of bit ewer and the measured probability of bit error support the validity of the proposed approach of probing home power line channel characteristics. The experimental results performed with the constructed test-bed applying the Proposed channel probing method and the operation reliability measurement of the overall networked system also support the feasibility of commercially deploying the PLC modem installed home appliances and their services for the Internet accessed home automation in densely populated residential apartment complexes.

  • PDF

덕정리 지진자료를 이용한 한국남동부지역 지각의 P, S파 감쇠구조 연구 (A Study on the Attenuation of High-frequency P and S Waves in the Crust of the Southeastern Korea using the Seismic Data in Deok-jung Ri)

  • 정태웅;사또 하루오
    • 지구물리
    • /
    • 제3권3호
    • /
    • pp.193-200
    • /
    • 2000
  • 지진파가 전달되면 진폭이 감쇠되는 정도를 나타내는 감쇠상수 $Q^{-1}$는 지구내부 물질의 물리적 성질을 나타내는 중요한 척도이며, 구조물의 내진설계에 있어서 지반의 강진동을 정량적으로 예측하기 위해 필수적이다. 경상북도 덕정리에 위치한 지진관측기기에 기록된 80지진과 76단일 관측망 기록자료를 바탕으로 한국남동부의 P, S 실체파 감쇠상수를 Coda확장규격화법에 의해 구하였다. 구하여진 $Q_P^{-1}$$Q_S^{-1}$는 각각 1.5Hz에서 $1{\times}10^{-2}$$9{\times}10^{-3}$, 24 Hz에서 $6{\times}10^{-4}$$5{\times}10^{-4}$로 줄어들고, $Q_P^{-1}=0.01\;f^{-1.07}$$Q_S^{-1}=0.01\;f^{-1.03}$의 강한 주파수 의존성을 보였다.

  • PDF

EXPERIMENTAL STUDY ON MEASUREMENT OF EMISSIVITY FOR ANALYSIS OF SNU-RCCS

  • CHO YUN-JE;KIM MOON OH;PARK GOON-CHERL
    • Nuclear Engineering and Technology
    • /
    • 제38권1호
    • /
    • pp.99-108
    • /
    • 2006
  • SNU-RCCS is a water pool type RCCS (Reactor Cavity Cooling System) developed for VHTR (Very High Temperature Reactor) application by SNU (Seoul National University). Since radiation heat transfer is the major process of passive heat removal in a RCCS, it is important to determine the precise emissivity of the reactor vessel. Review studies have used a constant emissivity in the passive heat removal analysis, even though the emissivity depends on many factors such as temperature, surface roughness, oxidation level, wavelength, direction, atmosphere conditions, etc. Therefore, information on the emissivity of a given material in a real RCCS is essential in order to properly analyze the radiation heat transfer in a VHTR. The objectives of this study are to develop a method for compensation of the factors affecting the emissivity measurement using an infrared thermometer and to estimate the true emissivity from the measured emissivity via the developed method, especially in the SNU-RCCS environment. From this viewpoint, we investigated factors such as the attenuation effect of the window, filling gas, and the effect of background radiation on the emissivity measurements. The emissivity of the vessel surface of the SNU-RCCS facility was then measured using a sight tube. The background radiation was subsequently removed from the measured emissivity by solving a simultaneous equation. Finally, the calculated emissivity was compared with the measured emissivity in a separate emissivity measurement device, yielding good agreement with the emissivity increase with vessel temperature in a range of 0.82 to 0.88.

Physical and nuclear shielding properties of newly synthesized magnesium oxide and zinc oxide nanoparticles

  • Rashad, M.;Tekin, H.O.;Zakaly, Hesham MH.;Pyshkina, Mariia;Issa, Shams A.M.;Susoy, G.
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2078-2084
    • /
    • 2020
  • Magnesium oxide (MgO) and Zinc oxide (ZnO) nanoparticles (NPs) have been successfully synthesized by solid-solid reaction method. The structural properties of ZnO and MgO NPs were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results indicated a formation of pure MgO and ZnO NPs. The mean diameter values of the agglomerated particles were around to be 70 and 50 nm for MgO and ZnO NPs, respectively using SEM analysis. Further, a wide-range of nuclear radiation shielding investigation for gamma-ray and fast neutrons have been studied for Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. FLUKA and Microshield codes have been employed for the determination of mass attenuation coefficients (μm) and transmission factors (TF) of Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. The calculated values for mass attenuation coefficients (μm) were utilized to determine other vital shielding properties against gamma-ray radiation. Moreover, the results showed that Zinc oxide (ZnO) nanoparticles with the lowest diameter value as 50 nm had a satisfactory capacity in nuclear radiation shielding.

Correlation Analysis between Ultrasonic Parameters and Elastic Modulus of Apple

  • Kim, Ghi-Seok;Kim, Ki-Bok;Park, Jeong-Gil;Lee, Sang-Dae;Jung, Hyun-Mo;Kim, Man-Soo
    • 비파괴검사학회지
    • /
    • 제28권3호
    • /
    • pp.279-284
    • /
    • 2008
  • The firmness of fruit is one of the most important quality factors and is highly correlated to the elastic modulus. In this study, the ultrasonic transmission method was applied to evaluate the elastic modulus of the apple. In order to transmit and receive the ultrasonic wave through the whole apple, the ultrasonic measurement setup consisted of ultrasonic pulser, two specially fabricated ultrasonic transducers for fruit and digital storage oscilloscope. Ultrasonic parameters such as ultrasonic wave velocity, apparent attenuation, and peak frequencies were analyzed. The elastic modulus of apple was measured by using compression test apparatus. The correlations between ultrasonic parameters and elastic modulus were analyzed. A multiple linear regression model describing the relationship between elastic modulus and ultrasonic parameters was proposed.

Gamma and neutron shielding properties of B4C particle reinforced Inconel 718 composites

  • Gokmen, Ugur
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.1049-1061
    • /
    • 2022
  • Neutron and gamma-ray shielding properties of Inconel 718 reinforced B4C (0-25 wt%) were investigated using PSD software. Mean free path (MFP), linear and mass attenuation coefficients (LAC,MAC), tenth-value and half-value layers (TVL,HVL), effective atomic number (Zeff), exposure buildup factors (EBF), and fast neutron removal cross-sections (FNRC) values were calculated for 0.015-15 MeV. It was found that MAC and LAC increased with the decrease in the content of B4C compound by weight in Inconel 718. The EBFs were computed using G-P fitting method for 0.015-15 MeV up to the penetration depth of 40 mfp. HVL, TVL, and FNRC values were found to range between 0.018 cm and 3.6 cm, between 2.46 cm and 12.087 cm, and between 0.159 cm-1 and 0.194 cm-1, respectively. While Inconel 718 provides the maximum photon shielding property since it offered the highest values of MAC and Zeff and the lowest value of HVL, Inconel 718 with B4C(25 wt%) was observed to provide the best shielding material for neutron since it offered the highest FNRC value. The study is original in terms of several aspects; moreover, the results of the study may be used in nuclear technology, as well as other technologies including nano and space technologies.

초음파 골밀도 측정에서 재현성 향상 방법에 관한 연구 (A Study on Method for Improving Reproducibility in the Ultrasonic Measurement of Bone Mineral Density)

  • 신정식;안중환;김화영;김형준;한승무
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1430-1437
    • /
    • 2005
  • It is very important to achieve a high reproducibility in the ultrasonic measurement of bone mineral density. In this study, we examined number of sampling waveform, control of temperature, diameter of region of interest as factors to improve reproducibility. We decided the optimal number of waveforms to be converted to frequency domain as period of 1. We have minimized the effects of variable temperature and constrained generation of micro bubble by keeping temperature within a range of $32\pm0.5^{\circ}C$ with a precise temperature controlling algorithm. We also found the optimal diameter of region of interest to be 13mm. In this paper, we demonstrated the improved reproducibility by controlling various factors affecting the ultrasonic measurement of bone mineral density.

인터넷 가전 제어를 위한 전력선 통신망 채널 특성 추정 기법에 관한 연구 (A systematic method of probing channel characteristics of home power line communication network applied to the Internet accessed control of home appliances)

  • 안남호;장태규;김훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2559-2561
    • /
    • 2002
  • This paper presents a systematic method of probing channel characteristics and communication reliabilities of home PLC (power line communication) network applied to the Internet accessed control of home appliances. The effects of the three performance deterioating factors, i.e., additive noise, channel attenuation, and intersymbol interference, can be systematically measured by applying the channel probing waveform in the frequency range from 100kHz to 450kHz. The agreement between the derived probability of bit error and the measured probability of bit error supports the validity of the proposed approach of probing home power line channel characteristics. The experimental results performed with the constructed test-bed applying the proposed channel probing method also support the feasibility of commercially deploying the PLC modem installed home appliances and their services for the Internet accessed home automation.

  • PDF

Dynamic Characteristic Analysis and LMI-based H_ Controller Design for a Line of Sight Stabilization System

  • Lee, Won-Gu;Kim, In-Soo;Keh, Joong-Eup;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1187-1200
    • /
    • 2002
  • This paper is concerned with the design or an LMI (Linear Matrix Inequality) -based H$\infty$ controller for a line of sight (LOS) stabilization system and with its robustness performance. The linearization of the system is necessary to analyze various nonlinear characteristics, but the linearization entails modeling uncertainties which reduce its performance. In addition, the stability of the LOS can be adversely affected by angular velocity disturbances while the vehicle is moving. As the vehicle accelerates, all the factors that are Ignored and simplified for the linearization tend to Inhibit the performance of the system. The robustness in the face of these uncertainties needs to be assured. This paper employs H$\infty$ control theory to address these problems and the LMI method to provide a suitable controller with minimal constraints for the system. Even though the system matrix does not have a full rank, the proposed method makes it possible to design a H$\infty$ controller and to deal with R and S matrices for reducing the system order. It can be also shown that the proposed robust controller has a better disturbance attenuation and tracking performance. The LMI method is also used to enhance the applicability of the proposed reduced-order H$\infty$ controller for the system given. The LMI-based H$\infty$ controller has superior disturbance attenuation and reference input tracking performance, compared with that of the conventional controller under real disturbances.