고령화가 심화되면서 암 발병률이 증가하고 있다. 피부 암은 외적으로 보이지만 사람들이 알아채지 못하거나 가볍게 간과하는 경우가 많다. 이에 초기 발견 시기를 놓쳐 말기의 경우 생존율이 7.5~11%로 사망에 이를 수 있다. 하지만 피부 암을 진단함에 있어 육안으로 진단하는 것이 아닌 정밀검사, 세포 검사 등 시간과 비용이 많이 든다는 단점이 있다. 따라서 본 연구에서는 이러한 단점을 해결하기 위해 Attention CNN 모델 기반 피부암 분류 시스템을 제안한다. 이 시스템은 전문의로 하여금 피부 암을 초기에 발견하여 신속한 조치를 취할 수 있도록 하는데 큰 도움을 줄 수 있다. 피부암 종류에 따른 이미지 데이터 불균형 문제에서 분포 비율이 낮은 데이터에는 Over Sampling 기법을, 분포 비율이 높은 데이터에는 Under Sampling 기법을 적용하여 완화하고 Attention layer가 없는 모델과 있는 모델을 비교하여 Attention layer가 없는 사전학습 모델에 추가한 피부암 분류 모델을 제안한다. 또한, 특정 클래스에 대하여 데이터 증강 기법을 강화하여 데이터 불균형 문제를 해결할 계획이다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권1호
/
pp.1-14
/
2024
Time-series forecasting is extensively used in the actual world. Recent research has shown that Transformers with a self-attention mechanism at their core exhibit better performance when dealing with such problems. However, most of the existing Transformer models used for time series prediction use the traditional encoder-decoder architecture, which is complex and leads to low model processing efficiency, thus limiting the ability to mine deep time dependencies by increasing model depth. Secondly, the secondary computational complexity of the self-attention mechanism also increases computational overhead and reduces processing efficiency. To address these issues, the paper designs an efficient multi-layer attention-based time-series forecasting model. This model has the following characteristics: (i) It abandons the traditional encoder-decoder based Transformer architecture and constructs a time series prediction model based on multi-layer attention mechanism, improving the model's ability to mine deep time dependencies. (ii) A cross attention module based on cross attention mechanism was designed to enhance information exchange between historical and predictive sequences. (iii) Applying a recently proposed sparse attention mechanism to our model reduces computational overhead and improves processing efficiency. Experiments on multiple datasets have shown that our model can significantly increase the performance of current advanced Transformer methods in time series forecasting, including LogTrans, Reformer, and Informer.
적대적 학습은 적대적 샘플에 대한 딥러닝 모델의 강건성을 향상시킨다. 하지만 기존의 적대적 학습 기법은 입력단계의 작은 섭동마저도 은닉층의 특징에 큰 변화를 일으킨다는 점을 간과하여 adversarial loss function에만집중한다. 그 결과로 일반 샘플 또는 다른 공격 기법과 같이 학습되지 않은 다양한 상황에 대한 정확도가 감소한다. 이 문제를 해결하기 위해서는 특징 표현 능력을 향상시키는 모델 아키텍처에 대한 분석이 필요하다. 본 논문에서는 입력 이미지의 attention map을 생성하는 attention module을 일반 모델에 적용하고 PGD 적대적학습을수행한다. CIFAR-10 dataset에서의 제안된 기법은 네트워크 구조에 상관없이 적대적 학습을 수행한 일반 모델보다 적대적 샘플에 대해 더 높은 정확도를 보였다. 특히 우리의 접근법은 PGD, FGSM, BIM과 같은 다양한 공격과 더 강력한 adversary에 대해서도 더 강건했다. 나아가 우리는 attention map을 시각화함으로써 attention module이 적대적 샘플에 대해서도 정확한 클래스의 특징을 추출한다는 것을 확인했다.
Aspect-based sentiment analysis is to discover the sentiment polarity towards an aspect from user-generated natural language. So far, most of the methods only use the implicit position information of the aspect in the context, instead of directly utilizing the position relationship between the aspect and the sentiment terms. In fact, neighboring words of the aspect terms should be given more attention than other words in the context. This paper studies the influence of different position embedding methods on the sentimental polarities of given aspects, and proposes a position embedding interactive attention network based on a long short-term memory network. Firstly, it uses the position information of the context simultaneously in the input layer and the attention layer. Secondly, it mines the importance of different context words for the aspect with the interactive attention mechanism. Finally, it generates a valid representation of the aspect and the context for sentiment classification. The model which has been posed was evaluated on the datasets of the Semantic Evaluation 2014. Compared with other baseline models, the accuracy of our model increases by about 2% on the restaurant dataset and 1% on the laptop dataset.
Facial expressions (FEs) serve as fundamental components for human emotion assessment and human-computer interaction. Traditional convolutional neural networks tend to overlook valuable information during the FE feature extraction, resulting in suboptimal recognition rates. To address this problem, we propose a deep learning framework that incorporates hierarchical feature fusion, contextual data, and an attention mechanism for precise FE recognition. In our approach, we leveraged an enhanced VGGNet16 as the backbone network and introduced an improved group convolutional channel attention (GCCA) module in each block to emphasize the crucial expression features. A partial decoder was added at the end of the backbone network to facilitate the fusion of multilevel features for a comprehensive feature map. A reverse attention mechanism guides the model to refine details layer-by-layer while introducing contextual information and extracting richer expression features. To enhance feature distinguishability, we employed islanding loss in combination with softmax loss, creating a joint loss function. Using two open datasets, our experimental results demonstrated the effectiveness of our framework. Our framework achieved an average accuracy rate of 74.08% on the FER2013 dataset and 98.66% on the CK+ dataset, outperforming advanced methods in both recognition accuracy and stability.
MACsec은 Layer 2에서 동작하는 암호화 기능이다. 최근 대두가 되고 있는 IoT(사물인터넷)와 같은 대규모 산업 분야의 장치들이 네트워크와 연결되면서 인터넷 트래픽이 급속도로 증가하고 있으며, 다양한 인터넷을 통한 공격의 위기에 놓여있다. 때문에 현재와 같이 트래픽이 증가하고 복잡해지는 상황에 특정 부분만이 아닌 트래픽 전체를 보호하는 MACsec 기술이 관심을 받고 있다. 이에 본 논문에서는 Layer 2 보안 기술인 MACsec을 기존 Layer2 네트워크에 간편하고 쉽게 추가할 수 있는 기술인 MACsec 어댑터를 설계한다.
최근 들어, 오디오 이벤트 검출을 위하여 다양한 딥뉴럴네트워크 기반의 방법들이 제안되어 왔다. 본 연구에서는 베이스라인 CRNN(Convolutional Recurrent Neural Network) 구조에 attention 방식을 도입함으로서 오디오 이벤트 검출의 성능을 향상시키고자 하였다. 베이스라인 CRNN의 입력단에 context gating을 적용하고 출력단에 attention layer을 추가하였다. 또한, 프레임(frame) 단위의 강전사 레이블(strong label)정보 뿐만 아니라 클립(clip) 단위의 약전사 레이블(weakly label) 오디오 데이터를 이용한 학습을 통하여 보다 나은 성능을 이루고자 하였다. DCASE 2018/2019 Challenge Task 4 데이터를 이용한 오디오 이벤트 검출 실험에서 제안된 attention 기반의 CRNN을 통하여 기존의 CRNN 방식에 비해서 최대 66%의 상대적 F-score 향상을 얻을 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권3호
/
pp.528-550
/
2024
Warehousing demand prediction is an essential part of the supply chain, providing a fundamental basis for product manufacturing, replenishment, warehouse planning, etc. Existing forecasting methods cannot produce accurate forecasts since warehouse demand is affected by external factors such as holidays and seasons. Some aspects, such as consumer psychology and producer reputation, are challenging to quantify. The data can fluctuate widely or do not show obvious trend cycles. We introduce a new model for warehouse demand prediction called MAGRU, which stands for Multi-layer Attention with GRU. In the model, firstly, we perform the embedding operation on the input sequence to quantify the external influences; after that, we implement an encoder using GRU and the attention mechanism. The hidden state of GRU captures essential time series. In the decoder, we use attention again to select the key hidden states among all-time slices as the data to be fed into the GRU network. Experimental results show that this model has higher accuracy than RNN, LSTM, GRU, Prophet, XGboost, and DARNN. Using mean absolute error (MAE) and symmetric mean absolute percentage error(SMAPE) to evaluate the experimental results, MAGRU's MAE, RMSE, and SMAPE decreased by 7.65%, 10.03%, and 8.87% over GRU-LSTM, the current best model for solving this type of problem.
This paper is an attempt to design segmentation method based on fully convolutional networks (FCN) and attention mechanism. The first five layers of the Visual Geometry Group (VGG) 16 network serve as the coding part in the semantic segmentation network structure with the convolutional layer used to replace pooling to reduce loss of image feature extraction information. The up-sampling and deconvolution unit of the FCN is then used as the decoding part in the semantic segmentation network. In the deconvolution process, the skip structure is used to fuse different levels of information and the attention mechanism is incorporated to reduce accuracy loss. Finally, the segmentation results are obtained through pixel layer classification. The results show that our method outperforms the comparison methods in mean pixel accuracy (MPA) and mean intersection over union (MIOU).
인터넷 기술의 발달로 기존의 추천 알고리즘은 사용자나 항목의 심층적인 특성을 학습할 수 없기 때문에 본 논문은 이 문제를 해결하기 위해 AMITI(주의 메커니즘 및 개선된 TF-IDF)에 기반한 추천 알고리즘을 제안했다. CNN(Convolutional Neural Network)에 2중 주의 메커니즘을 도입함으로써 CNN의 특징 추출 능력이 향상되고, 항목 특징에 다른 선호도 가중치가 할당되며, 사용자 선호도와 더 일치하는 권고사항이 달성되었다. 대상 사용자에게 항목을 추천할 때 점수 데이터와 항목 유형 데이터를 TF-IDF와 결합하여 권장 결과의 그룹화를 완료하였다. 본 논문에서 진행한 MovieLens-1M 데이터 세트에 대한 실험 결과는, AMITI 알고리즘이 권장 사항의 정확도를 향상시키고 프레젠테이션 방법의 순서와 선택성을 향상시킨다는 것을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.