• 제목/요약/키워드: Attention Bidirectional LSTM

검색결과 18건 처리시간 0.023초

DG-based SPO tuple recognition using self-attention M-Bi-LSTM

  • Jung, Joon-young
    • ETRI Journal
    • /
    • 제44권3호
    • /
    • pp.438-449
    • /
    • 2022
  • This study proposes a dependency grammar-based self-attention multilayered bidirectional long short-term memory (DG-M-Bi-LSTM) model for subject-predicate-object (SPO) tuple recognition from natural language (NL) sentences. To add recent knowledge to the knowledge base autonomously, it is essential to extract knowledge from numerous NL data. Therefore, this study proposes a high-accuracy SPO tuple recognition model that requires a small amount of learning data to extract knowledge from NL sentences. The accuracy of SPO tuple recognition using DG-M-Bi-LSTM is compared with that using NL-based self-attention multilayered bidirectional LSTM, DG-based bidirectional encoder representations from transformers (BERT), and NL-based BERT to evaluate its effectiveness. The DG-M-Bi-LSTM model achieves the best results in terms of recognition accuracy for extracting SPO tuples from NL sentences even if it has fewer deep neural network (DNN) parameters than BERT. In particular, its accuracy is better than that of BERT when the learning data are limited. Additionally, its pretrained DNN parameters can be applied to other domains because it learns the structural relations in NL sentences.

Bidirectional Convolutional LSTM을 이용한 Deepfake 탐지 방법 (A Method of Detection of Deepfake Using Bidirectional Convolutional LSTM)

  • 이대현;문종섭
    • 정보보호학회논문지
    • /
    • 제30권6호
    • /
    • pp.1053-1065
    • /
    • 2020
  • 최근 하드웨어의 성능과 인공지능 기술이 발달함에 따라 육안으로 구분하기 어려운 정교한 가짜 동영상들이 증가하고 있다. 인공지능을 이용한 얼굴 합성 기술을 딥페이크라고 하며 약간의 프로그래밍 능력과 딥러닝 지식만 있다면 누구든지 딥페이크를 이용하여 정교한 가짜 동영상을 제작할 수 있다. 이에 무분별한 가짜 동영상이 크게 증가하였으며 이는 개인 정보 침해, 가짜 뉴스, 사기 등에 문제로 이어질 수 있다. 따라서 사람의 눈으로도 진위를 가릴 수 없는 가짜 동영상을 탐지할 수 있는 방안이 필요하다. 이에 본 논문에서는 Bidirectional Convolutional LSTM과 어텐션 모듈(Attention module)을 적용한 딥페이크 탐지 모델을 제안한다. 본 논문에서 제안하는 모델은 어텐션 모듈과 신경곱 합성망 모델을 같이 사용되어 각 프레임의 특징을 추출하고 기존의 제안되어왔던 시간의 순방향만을 고려하는 LSTM과 달리 시간의 역방향도 고려하여 학습한다. 어텐션 모듈은 합성곱 신경망 모델과 같이 사용되어 각 프레임의 특징 추출에 이용한다. 실험을 통해 본 논문에서 제안하는 모델은 93.5%의 정확도를 갖고 기존 연구의 결과보다 AUC가 최대 50% 가량 높음을 보였다.

어텐션 알고리듬 기반 양방향성 LSTM을 이용한 동영상의 압축 표준 예측 (Video Compression Standard Prediction using Attention-based Bidirectional LSTM)

  • 김상민;박범준;정제창
    • 방송공학회논문지
    • /
    • 제24권5호
    • /
    • pp.870-878
    • /
    • 2019
  • 본 논문에서는 어텐션 알고리듬 (attention algorithm) 기반의 양방향성 LSTM (bidirectional long short-term memory; BLSTM) 을 동영상의 압축 표준을 예측하기 위해 사용한다. 자연어 처리 (natural language processing; NLP) 분야에서 순환적 신경망 (recurrent neural networks; RNN) 의 구조를 이용하여 문장의 다음 단어를 예측하거나 의미에 따라 문장을 분류하거나 번역하는 연구들은 계속되어왔고, 이는 챗봇, 음성인식 스피커, 번역 애플리케이션 등으로 상용화되었다. LSTM 은 RNN에서 gradient vanishing problem 을 해결하고자 고안됐고, NLP 분야에서 유용하게 사용되고 있다. 제안한 알고리듬은 BLSTM과 특정 단어에 집중하여 분류할 수 있는 어텐션 알고리듬을 자연어 문장이 아닌 동영상의 비트스트림에 적용해 동영상의 압축 표준을 예측하는 것이 가능하다.

소리 데이터를 이용한 불량 모터 분류에 관한 연구 (A Study on the Classification of Fault Motors using Sound Data)

  • 장일식;박구만
    • 방송공학회논문지
    • /
    • 제27권6호
    • /
    • pp.885-896
    • /
    • 2022
  • 제조에서의 모터 불량은 향후 A/S 및 신뢰성에 중요한 역활을 한다. 모터의 불량 구분은 소리, 전류, 진동등의 측정을 통해 검출한다. 본 논문에서 사용한 데이터는 자동차 사이드미러 모터 기어박스의 소리를 사용하였다. 모터 소리는 3가지의 클래스로 구성되어 있다. 소리 데이터는 멜스펙트로그램을 통한 변환 과정을 거쳐 네트워크 모델에 입력된다. 본 논문에서는 불량 모터 구분 성능을 올리기 위한 데이터 증강, 클래스 불균형에 따는 다양한 데이터 재샘플링, 재가중치 조절, 손실함수의 변경, 표현 학습과 클래스 구분의 두 단계 분리 방법 등 다양한 방법을 적용하였으며, 추가적으로 커리큘럼 러닝 방법, 자기 스페이스 학습 방법 등을 Bidirectional LSTM Attention, Convolutional Recurrent Neural Network, Multi-Head Attention, Bidirectional Temporal Convolution Network, Convolution Neural Network 등 총 5가지 네트워크 모델을 통하여 비교하고, 모터 소리 구분에 최적의 구성을 찾을 수 있었다.

Encoding Dictionary Feature for Deep Learning-based Named Entity Recognition

  • Ronran, Chirawan;Unankard, Sayan;Lee, Seungwoo
    • International Journal of Contents
    • /
    • 제17권4호
    • /
    • pp.1-15
    • /
    • 2021
  • Named entity recognition (NER) is a crucial task for NLP, which aims to extract information from texts. To build NER systems, deep learning (DL) models are learned with dictionary features by mapping each word in the dataset to dictionary features and generating a unique index. However, this technique might generate noisy labels, which pose significant challenges for the NER task. In this paper, we proposed DL-dictionary features, and evaluated them on two datasets, including the OntoNotes 5.0 dataset and our new infectious disease outbreak dataset named GFID. We used (1) a Bidirectional Long Short-Term Memory (BiLSTM) character and (2) pre-trained embedding to concatenate with (3) our proposed features, named the Convolutional Neural Network (CNN), BiLSTM, and self-attention dictionaries, respectively. The combined features (1-3) were fed through BiLSTM - Conditional Random Field (CRF) to predict named entity classes as outputs. We compared these outputs with other predictions of the BiLSTM character, pre-trained embedding, and dictionary features from previous research, which used the exact matching and partial matching dictionary technique. The findings showed that the model employing our dictionary features outperformed other models that used existing dictionary features. We also computed the F1 score with the GFID dataset to apply this technique to extract medical or healthcare information.

LSTM 기반의 sequence-to-sequence 모델을 이용한 한글 자동 띄어쓰기 (LSTM based sequence-to-sequence Model for Korean Automatic Word-spacing)

  • 이태석;강승식
    • 스마트미디어저널
    • /
    • 제7권4호
    • /
    • pp.17-23
    • /
    • 2018
  • 자동 띄어쓰기 특성을 효과적으로 처리할 수 있는 LSTM(Long Short-Term Memory Neural Networks) 기반의 RNN 모델을 제시하고 적용한 결과를 분석하였다. 문장이 길거나 일부 노이즈가 포함된 경우에 신경망 학습이 쉽지 않은 문제를 해결하기 위하여 입력 데이터 형식과 디코딩 데이터 형식을 정의하고, 신경망 학습에서 드롭아웃, 양방향 다층 LSTM 셀, 계층 정규화 기법, 주목 기법(attention mechanism)을 적용하여 성능을 향상시키는 방법을 제안하였다. 학습 데이터로는 세종 말뭉치 자료를 사용하였으며, 학습 데이터가 부분적으로 불완전한 띄어쓰기가 포함되어 있었음에도 불구하고, 대량의 학습 데이터를 통해 한글 띄어쓰기에 대한 패턴이 의미 있게 학습되었다. 이것은 신경망에서 드롭아웃 기법을 통해 학습 모델의 오버피팅이 되지 않도록 함으로써 노이즈에 강한 모델을 만들었기 때문이다. 실험결과로 LSTM sequence-to-sequence 모델이 재현율과 정확도를 함께 고려한 평가 점수인 F1 값이 0.94로 규칙 기반 방식과 딥러닝 GRU-CRF보다 더 높은 성능을 보였다.

LSTM 모델을 이용한 농산물 가격 예측에 관한 연구 (Prediction of Agricultural Prices Using LSTM)

  • 유동완;박종범
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.710-712
    • /
    • 2022
  • 농산물은 일상 소비의 필수품으로서 도소매 시장의 많은 부분을 차지하며, 농산물의 소비와 가격은 농산물의 수급, 소비자 지출, 농업 가계소득에 영향을 미친다. 따라서 본 연구에서는 LSTM을 이용해 농산물 거래, 기상관측, 관세청 품목별 수출입 실적, 신선식품 지수 데이터를 사용해 단위가격 예측에 관한 연구를 수행하였다. 농산물의 수급관리와 도소매 시장에서의 적정한 가격을 연구하기 위해 채소가격 안정제 대상 품목 중 소비자물가지수 가중치가 높은 마늘, 배추, 양파를 대상으로 단위가격을 예측한다.

  • PDF

Video Saliency Detection Using Bi-directional LSTM

  • Chi, Yang;Li, Jinjiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권6호
    • /
    • pp.2444-2463
    • /
    • 2020
  • Significant detection of video can more rationally allocate computing resources and reduce the amount of computation to improve accuracy. Deep learning can extract the edge features of the image, providing technical support for video saliency. This paper proposes a new detection method. We combine the Convolutional Neural Network (CNN) and the Deep Bidirectional LSTM Network (DB-LSTM) to learn the spatio-temporal features by exploring the object motion information and object motion information to generate video. A continuous frame of significant images. We also analyzed the sample database and found that human attention and significant conversion are time-dependent, so we also considered the significance detection of video cross-frame. Finally, experiments show that our method is superior to other advanced methods.

Bi-LSTM 모델을 이용한 음악 생성 시계열 예측 (Prediction of Music Generation on Time Series Using Bi-LSTM Model)

  • 김광진;이칠우
    • 스마트미디어저널
    • /
    • 제11권10호
    • /
    • pp.65-75
    • /
    • 2022
  • 딥러닝은 기존의 분석 모델이 갖는 한계를 극복하고 텍스트, 이미지, 음악 등 다양한 형태의 결과물을 생성할 수 있는 창의적인 도구로 활용되고 있다. 본 고에서는 Niko's MIDI Pack 음원 파일 1,609개를 데이터 셋으로 삼아 전처리 과정을 수행하고, 양방향 장단기 기억 순환 신경망(Bi-LSTM) 모델을 이용하여, 효율적으로 음악을 생성할 수 있는 전처리 방법과 예측 모델을 제시한다. 생성되는 으뜸음을 바탕으로 음악적 조성(調聲)에 적합한 새로운 시계열 데이터를 생성할 수 있도록 은닉층을 다층화하고, 디코더의 출력 게이트에서 인코더의 입력 데이터 중 영향을 주는 요소의 가중치를 적용하는 어텐션(Attention) 메커니즘을 적용한다. LSTM 모델의 인식률 향상을 위한 파라미터로서 손실함수, 최적화 방법 등 설정 변수들을 적용한다. 제안 모델은 MIDI 학습의 효율성 제고 및 예측 향상을 위해 높은음자리표(treble clef)와 낮은음자리표(bass clef)를 구분하여 추출된 음표, 음표의 길이, 쉼표, 쉼표의 길이와 코드(chord) 등을 적용한 다채널 어텐션 적용 양방향 기억 모델(Bi-LSTM with attention)이다. 학습의 결과는 노이즈와 구별되는 음악의 전개에 어울리는 음표와 코드를 생성하며, 화성학적으로 안정된 음악을 생성하는 모델을 지향한다.

Bidirectional Stack Pointer Network를 이용한 한국어 의존 파싱 (Bidirectional Stack Pointer Network for Korean Dependency Parsing)

  • 홍승연;나승훈;신종훈;김영길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.19-22
    • /
    • 2018
  • 본 논문에서는 기존 Stack Pointer Network의 의존 파싱 모델을 확장한 Bi-Stack Pointer Network를 제안한다. Stack Pointer Network는 기존의 Pointer Network에 내부 stack을 만들어 전체 문장을 읽어 dependency tree를 구성한다. stack은 tree의 깊이 우선 탐색을 통해 선정되고 Pointer Network는 stack의 top 단어(head)의 자식(child)을 선택한다. 제안한 모델은 기존의 Stack Pointer Network가 지배소(head)정보로 의존소(child)를 예측하는 부분에 Biaffine attention을 통해 의존소(child)에서 지배소(head)를 예측하는 방향을 추가하여 양방향 예측이 가능하게 한 모델이다. 실험 결과, 제안 Bi-Stack Pointer Network모델은 UAS 91.53%, LAS 90.93%의 성능을 보여주어 기존 최고 성능을 개선시켰다.

  • PDF