• 제목/요약/키워드: Attack Angle

검색결과 740건 처리시간 0.023초

와류발생기의 충돌각과 루버각의 상호작용에 의한 열전달촉진 (Heat Transfer Enhancement by the Combined Effect of Louver Angle and Angle of Attack of Vertex Generator)

  • 박병규;정재동;이준식
    • 설비공학논문집
    • /
    • 제14권6호
    • /
    • pp.477-484
    • /
    • 2002
  • A numerical investigation of the performance of the plate heat exchanger with rectangular winglet is conducted to examine the combined effect of vortex generator and louver fins. Velocity and temperature fields and spanwise averaged Nu and friction factor are presented. Enhancement of heat transfer and flow loss penalty is evident. A Parametric study of three factors (Re, angle of attack and louver angle) with levels of 5 (Re= 300, 500, 700, 900, 1100), 4($\alpha=15^{\circ}, 30^{\circ}, 45^{\circ}, 90^{\circ},$), and 4($\beta=0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}$), respectively, indicates the performance defined by the ratio of heat transfer enhancement to flow loss penalty shows monotonic behavior for each parameter alone but the interactions between parameters is found to be considerable effect on the performance of heat exchanger and should be considered in design. The effect of stamping is also examined.

An approximate method for aerodynamic optimization of horizontal axis wind turbine blades

  • Ying Zhang;Liang Li;Long Wang;Weidong Zhu;Yinghui Li;Jianqiang Wu
    • Wind and Structures
    • /
    • 제38권5호
    • /
    • pp.341-354
    • /
    • 2024
  • This paper presents a theoretical method to deal with the aerodynamic performance and pitch optimization of the horizontal axis wind turbine blades at low wind speeds. By considering a blade element, the functional relationship among the angle of attack, pitch angle, rotational speed of the blade, and wind speed is derived in consideration of a quasi-steady aerodynamic model, and aerodynamic loads on the blade element are then obtained. The torque and torque coefficient of the blade are derived by using integration. A polynomial approximation is applied to functions of the lift and drag coefficients for the symmetric and asymmetric airfoils respectively, where specific expressions of aerodynamic loads as functions of the angle of attack (which is a function of pitch angle) are obtained. The pitch optimization problem is investigated by considering the maximum value problem of the instantaneous torque of a blade as a function of pitch angle. Dynamic pitch laws for HAWT blades with either symmetric or asymmetric airfoils are derived. Influences of parameters including inflow ratio, rotational speed, azimuth, and wind speed on torque coefficient and optimal pith angle are discussed.

Effects of Angles of Attack and Throttling Conditions on Supersonic Inlet Buzz

  • NamKoung, Hyuck-Joon;Hong, Woo-Ram;Kim, Jung-Min;Yi, Jun-Sok;Kim, Chong-Am
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권3호
    • /
    • pp.296-306
    • /
    • 2012
  • A series of numerical simulations are carried out to analyze a supersonic inlet buzz, which is an unsteady pressure oscillation phenomenon around a supersonic inlet. A simple but efficient geometry, experimentally adopted by Nagashima, is chosen for the analysis of unsteady flow physics. Among the two sets of simulations considered in this study, the effects of various throttling conditions are firstly examined. It is seen that the major physical characteristic of the inlet buzz can be obtained by inviscid computations only and the computed flow patterns inside and around the inlet are qualitatively consistent with the experimental observations. The dominant frequency of the inlet buzz increases as throttle area decreases, and the computed frequency is approximately 60Hz or 15% lower than the experimental data, but interestingly, this gap is constant for all the test cases and shock structures are similar. Secondly, inviscid calculations are performed to examine the effect regarding angle of attack. It is found that patterns of pressure oscillation histories and distortion due to asymmetric (or three-dimensional) shock structures are substantially affected by angle of attack. The dominant frequency of the inlet buzz, however, does not change noticeably even in regards to a wide range of angle of attacks.

펜싱 플러레 공격 기술중 마르쉬 팡트 동작의 운동학적 분석 (Kinematic Analysis of Marche Fente Motion in a Fleuret Attack Technique)

  • 안상용
    • 한국운동역학회지
    • /
    • 제13권3호
    • /
    • pp.277-291
    • /
    • 2003
  • This study was designed to examine the kinematic factors in the phase during the marche fente motion. For this study, the subjects were 5 elite male fencing players. The direct linear transformation (DLT) method was used in calculating 3-D coordinate of the digitized body parts. The cubic spline function was used for smoothing and the kinematic data for displacement, velocity, angle variables were calculated for Kwon3d ver 2.1. And the following conclusions were drawn; 1. It show that the marche phase appeared to longer time than the pante phase In the performance time. For the fast attack, it showed that the subjects should be moving in a short stride width. 2. For a fast and stable movement posture in the marche phase, the vertical change of COG must be maintain the same position as possible, but all subjects appeared to decrease the COG because of a excessive the knee flection. 3. In the COG velocity change, all the subjects showed to the same change in both the marche and the fente phase. However in the attack extremity velocity, it increased velocity in order of upper arm, fore arm, and hand in the marche phase, but it showed different velocity among each subjects at the moment of stabbing. So that in order to do effective stabbing, they have to extend their upper extremity max and do faster the distal segment than the proximal segment. 4. It showed to take a fast and stable movement, because some subjects showed the big anteroposterior angle of the trunk flexed max shoulder angle and elbow angle of their attack arm and the other upper extremity.

날개의 종횡비가 날개 짓 운동의 공기역학적 특성에 미치는 영향 (The Effect of Aspect Ratio on Aerodynamic Characteristics of Flapping Motion)

  • 오현택;최항철;김광호;정진택
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.217-220
    • /
    • 2006
  • The lift and drag forces produced by a wing of a given cross-sectional profile are dependent on the wing planform and the angle of attack. Aspect ratio is the ratio of the wing span to the average chord. For conventional fixed wing aircrafts, high aspect ratio wings produce a higher lift to drag ratio than low ones for flight at subsonic speeds. Therefore, high aspect ratio wings are used on aircraft intended for long endurance. However, birds and insects flap their wings to fly in the air and they can change their wing motions. Their wing motions are made up of translation and rotation. Therefore, we tested flapping motions with parameters which affect rotational motion such as the angle of attack and the wing beat frequency. The half elliptic shaped wings were designed with the variation of aspect ratio from 4 to 11. The flapping device was operated in the water to reduce the wing beat frequency according to Reynolds similarity. In this study, the aerodynamic forces, the time-averaged force coefficients and the lift to drag ratio were measured at Reynolds number 15,000 to explore the aerodynamic characteristics with the variation of aspect ratio. The maximum lift coefficient was turned up at AR=8. The mean drag coefficients were almost same values at angle of attack from $10^{\circ}$ to $40^{\circ}$ regardless of aspect ratio, and the mean drag coefficients above angle of attack $50^{\circ}$ were decreased according to the increase of aspect ratio. For flapping motion the maximum mean lift to drag ratio appeared at AR=8.

  • PDF

플러시 압력공을 사용한 대기자료 측정장치의 교정 및 비행시험 결과 (Calibration and Flight Test Results of Air Data Sensing System using Flush Pressure Ports)

  • 이창호;박영민;장병희;이융교
    • 한국항공우주학회지
    • /
    • 제45권7호
    • /
    • pp.531-538
    • /
    • 2017
  • 비행속력 및 받음각과 옆미끄럼각을 측정할 수 있는 플러시 대기자료측정장치를 소형의 무인항공기를 대상으로 설계/제작하였다. 동체 노즈콘 표면에 4개 압력 측정점과 5개 압력 측정점의 2가지 타입으로 플러시 압력공들을 만들었다. 플러시 압력공의 교정 압력 데이터는 전기체를 전산유체해석 코드로 계산하여 구축하였다. 교정압력 데이터로부터 받음각, 옆미끄럼각, 전압계수, 정압계수는 4차 다항식으로 표현하고, 최소자승법으로 교정계수 행렬을 구하였다. 비행시험 결과 4개 플러시 압력공 및 5개 플러시 압력공을 이용하여 예측된 비행속력, 받음각과 옆미끄럼각은 비교를 위해 장착한 5-압력공 프로브로 예측된 것과 잘 일치하였으며, 특히 4개의 압력공으로 5개 압력공과 거의 동일한 결과를 얻을 수 있었다.

FLOWING OF THE SYSTEM THE UNDERWATER VEHICLES HULL THE NOZZLE OF PUMP-JET PROPELLER WITH AMOLES OF ATTACK

  • Lee, Kwi-Joo;Nikushchenko, Dmitry V.;Park, Weon-Me
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.275-280
    • /
    • 2002
  • Results of a numerical simulation of a flowing of the underwater vehicles hull with the pump-jet nozzle are presented. It was calculate velocity distributions and coefficients of the lift force and the longitudinal moment of the hull with the pump-jet nozzle and isolated hull for some values of angle of attack. It was shown that the area of tile influence of the nozzle on the velocities distribution of the hull and character of changing of coefficients of the lift force and the longitudinal moment and their derivatives depending on angle of attack.

  • PDF

큰 받음각을 갖는 세장형 물체 주위의 점성 유동장 수치 모사 (Numerical Simulation of Asymmetric Vortical Flows on a Slender Body at High Incidence)

  • 노오현;황수정
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.98-111
    • /
    • 1996
  • The compressible laminar and turbulent viscous flows on a slender body in supersonic speed as well as subsonic speed have been numerically simulated at high angle of attack. The steady and time-accurate compressible thin-layer Navier-Stokes code based on an implicit upwind-biased LU-SGS algorithm has been developed and specifically applied at angles of attack of 20, 30 and 40 dog, respectively. The modified eddy-viscosity turbulence model suggested by Degani and Schiff was used to simulate the case of turbulent flow. Any geometric asymmetry and numerical perturbation have not been intentionally or artificially imposed in the process of computation. The purely numerical results for laminar and turbulent cases, however, show clear asymmetric formation of vortices which were observed experimentally. Contrary to the subsonic results, the supersonic case shows the symmetric formation of vortices as indicated by the earlier experiments.

  • PDF

큰 받음각을 갖는 세장형 물체 주위의 점성 유동장 수치 모사 (Numerical Simulation of Flow Around a Slender Body at High Angle of Attack)

  • 노오현;황수정
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.3-10
    • /
    • 1995
  • The compressible laminar and turbulent viscous flow on a slender body in supersonic speed as well as subsonic speed has been numerically simulated at high angle of attack. The steady and time-accurate compressible thin-layer Navier-Stokes code based on an implicit upwind-biased LU-SGS algorithm has been developed and specifically applied at angles of attack of 20, 30, 40 deg, respectively. The modified eddy-viscosity turbulence model suggested by Degani and Schiff was used to simulate the case of turbulent flow. Any geometric asymmetry and numerical perturbation have not been intentionally or artificially imposed in the process of computation. The purely numerical results for laminar and turbulent cases, however, show clear asymmetric formation of vortices which were observed experimentally. Contrary to the subsonic results, the supersonic case shows the symmetric formation of vortices as indicated by the earlier experiments.

  • PDF

고온 고속유동으로 인한 실제 기체효과의 수치해석적 연구 (A Numerical Study on Real Gas Effect due to High Temperature and Speed Flow)

  • 송동주
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2431-2442
    • /
    • 1994
  • In this paper the efficient space marching Viscous Shock Layer and Parabolized Navier-Stokes method have been applied to study the complex 3-D hypersonic equilibrium chemically reacting flowfilelds over sphere-cone($10^{\circ}$) vehicle at low angles of attack($0^{\circ}~5^{\circ}), Mach 20, and an altitude of 35km. The current bluntbody/afterbody space marching numerical method predicts the complex flowfields accurately and efficiently even on a small computer. The shock thickness from equilibrium air model is thinner than that from the perfect gas model. The windside wall heat-transfer rate, pressure and skin friction force were increased significantly when compared with those of leeside. The CA, CN, CM were increased almost linearly with the angle of attack in this region. The wall pressure, heat transfer, skin friction and axial force coeffient from equilibrium model were much higher than those from perfect gas model. The center of pressure moved forward with the increase of angle of attack.