• Title/Summary/Keyword: Atomization characteristics

Search Result 785, Processing Time 0.023 seconds

The Behavior of Impinging Spray by Piston Cavity Geometry (PistonCavity 형상에 따른 충돌분류의 분무거동)

  • 이상석;김근민;김봉곤;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.211-219
    • /
    • 1996
  • In a small high-speed D. I. diesel engine, the injected fuel spray into the atmosphere of the high temperature is burnt by go through the process of break up, atomization, evaporation and process of ignition. These process are important to decide the emission control and the rate of fuel consumption and out put of power. Especially, in the case of injected fuel spray impinging on the wall of piston cavity, the geometry of piston cavity gives great influence the ignitability of injected fuel and the flame structure. Ordinary, the combustion chamber of driving engine have unsteady turbulent flow be attendant on such as the change of temperature, velocity and pressure. So the analysis of spray behavior is difficult. In this study, the spray was impinged on the wall of 3 types of piston cavity such as Dish, Toroidal, Re-entrant type, in order to analyze the combustion process of impinging spray precisely and systematically. And hot wire probe was used for analyze non-steady flow characteristics of impinging spray, and to investigate the behavior of spray, the aspects of concentration c(t), standard deviation σ(t) and variation factor(vf) was measured with the lapse of time.

  • PDF

Microstructural Feature and Aging Characteristics of Spray-Formed Cu-5Ni-10Sn Alloy (가스분무성형 Cu-5Ni-10Sn 합금의 미세조직 및 시효강화)

  • Roh, Dae-Gyun;Kang, Hee-Soo;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.317-321
    • /
    • 2012
  • In this study, Cu-5Ni-10Sn(wt%) spinodal alloy was manufactured by gas atomization spray forming, and the microstructural features and mechanical properties of Cu-5Ni-10Sn alloy have been investigated during homogenization, cold working and age-hardening. The spray formed Cu-5Ni-10Sn alloy consisted of an equiaxed microstructure with a mixture of solid solution ${\alpha}$-(CuNiSn) grains and lamellar-structure grains. Homogenization at $800^{\circ}C$ and subsequent rapid quenching formed a uniform solid solution ${\alpha}$-(CuNiSn) phase. Direct aging at $350^{\circ}C$ from the homogenized Cu-5Ni-10Sn alloy promoted the precipitation of finely distributed ${\gamma}$' or ${\gamma}-(Cu,Ni)_3Sn$ phase throughout the matrix, resulting in a significant increase in microhardness and tensile strength. Cold working prior to aging was effective in strengthening Cu-5Ni-10Sn alloy, which gave rise to a maximum tensile strength of 1165 MPa. Subsequent aging treatment slightly reduced the tensile strength to 1000-1100 MPa due to annealing effects.

Effects of Port Fuel Injection Characteristics upon HC Emission in SI Engines (연료 분사 특성이 가솔린 엔진 HC 배출에 미치는 영향)

  • 우영민;배충식;이동원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.8-15
    • /
    • 2003
  • During cold operation, fuel injection in the intake port directly contributes to the unburned hydrocarbon formation in spark ignition engines. The relationship between injection parameters and HC emission behavior was investigated through a series of experiments. Spray behavior of port fuel injectors was characterized through a quantitative evaluation of mass concentration of liquid fuel by a patternator and PDA(Phase-Doppler. Anemometer). A 6-hole injector was found to produce finer spray than single hole injector. Using a purpose-built wall, the wetted fuel was measured, which was mostly affected by wall temperature. HC emissions were measured in a production engine varying coolant temperature$(20~80^{\circ}C)$, also with respect to the different types of injectors. In the 6-hole injector application, the engine produced less HC emission in low coolant temperature region. Though it produces much more amount of wetting fuel, it has the advantages of finer atomization quality. In high coolant temperature region, there was little effect by different types of injectors. The control schemes to reduce HC emissions during cold start could be suggested from the findings that the amount of fuel supply and HC emission could be reduced by utilizing fine spray and high intake wall temperature.

Numerical Study on the Effects of Spray Properties of Water Mist on the Fire Suppression Mechanism (미분무수 특성이 화재억제 메커니즘에 미치는 영향에 대한 수치해석적 연구)

  • Bae, Kang-Youl;Chung, Hee-Taeg;Kim, Hyoung-Bum
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.175-184
    • /
    • 2017
  • The numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m^3$ and a water mist nozzle that be installed 1.8 m from fire pool. In the present study, the parameters of nozzle for simulation are the droplet size and the spray velocity. The droplet size influences to fire flume on fire suppression more than the spray velocity because of the effect of the terminal velocity. The optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20 m/s respectively.

Numerical Study on the Effect of Nozzle Geometry on the Small CRDI Engine Performance (노즐 형상 변경이 소형 CRDI 엔진의 성능에 미치는 영향에 대한 수치 해석적 연구)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.254-260
    • /
    • 2015
  • The objective of this study is to investigate the effect of multi-hole nozzle on the performance of small CRDI engine. Combustion and exhaust emission characteristics of engine were studied by using CFD simulation with ECFM-3Z combustion model. The conditions of simulation were varied with nozzle geometry, injection timing and injection quantity. In addition, the results were compared in terms of combustion pressure, rate of heat release, $NO_x$ and soot emissions. It was found that combustion pressure was increased when injection timing was advanced. The rate of heat release of 6 hole nozzle was higher than that of 12 hole nozzle since the quantity of fuel impinged at the bottom of piston rim was different under different injection timing conditions. In the case of $NO_x$ emission, 6 hole nozzle generated more $NO_x$ emission than 12 hole nozzle. On the other hand, in the case of soot emission, 12 hole nozzle showed higher value than 6 hole nozzle because injected fuel droplets from multi-hole nozzle were coalesced.

Surface Cleaning of a Wafer Contaminated by Fingerprint Using a Laser Cleaning Technology (레이저 세정기술을 이용한 웨이퍼의 표면세정)

  • Lee, Myong-Hwa;Baek, Ji-Young;Song, Jae-Dong;Kim, Sang-Bum;Kim, Gyung-Soo
    • Journal of ILASS-Korea
    • /
    • v.12 no.4
    • /
    • pp.185-190
    • /
    • 2007
  • There is a growing interest to develop a new cleaning technology to overcome the disadvantages of wet cleaning technologies such as environmental pollution and the cleaning difficulty of contaminants on integrated circuits. Laser cleaning is a potential technology to remove various pollutants on a wafer surface. However, there is no fundamental data about cleaning efficiencies and cleaning mechanisms of contaminants on a wafer surface using a laser cleaning technology. Therefore, the cleaning characteristics of a wafer surface using an excimer laser were investigated in this study. Fingerprint consisting of inorganic and organic materials was chosen as a representative of pollutants and the effectiveness of a laser irradiation on a wafer cleaning has been investigated qualitatively and quantitatively. The results have shown that cleaning degree is proportional to the laser irradiation time and repetition rate, and quantitative analysis conducted by an image processing method also have shown the same trend. Furthermore, the cleaning efficiency of a wafer contaminated by fingerprint strongly depended on a photothermal cleaning mechanism and the species were removed in order of hydrophilic and hydrophobic contaminants by laser irradiation.

  • PDF

Inedible Vegetable Oil as Substitute Fuel in Compression Ignition Engines-Jatropha Oil

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.153-162
    • /
    • 2009
  • The use of inedible vegetable oils as substitute for diesel fuel in compression ignition engine is of significance because of the great need for edible oil as food, and the reduction of biodiesel production cost etc. Jatropha curcas oil which is a leading candidate for the commercialization of inedible vegetable oils is selected in this study for reviewing the application in CI engine as an alternative fuel. The important properties of jatropha oil (JO) and JO biodiesel are summarized from the various sources in the literature. It is found that five different types of alternative fuel from JO such as neat JO, JO blends with diesel or other fuel, neat JO biodiesel, JO biodiesel blends with diesel or other fuel and degummed JO were extensively examined in the diesel engine. Two different application types of alternative fuels from JO such as preheating and dual fuelling were also tested, It should be pointed out that most of these applications are limited to single cylinder conditions. The systematic study for the selection of effective application method is required. It is clear that the blends of JOME and diesel can replace diesel fuel up to 10% by volume for running the existing common rail direct injection systems without any durability problems. The systematic assessment of spray characteristics of different types of JO and its derivatives for use as diesel engine fuel is also required.

  • PDF

A study on Greenhouse gas Emission Characteristics of Conventional Passenger and Hybrid Electric Vehicles (승용 및 하이브리드 자동차 온실가스 배출특성 연구)

  • Lim, Yun Sung;Mun, Sun Hee;Chung, Taek Ho;Lee, Jong Tae;Dong, Jong In
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.34-39
    • /
    • 2020
  • Automotive manufacturers are applying technologies for greenhouse gas reduction such as vehicle weight reduction, engine downsizing, direct injection technology, variable valves and transmission performance improvement to achieve the targets for enhanced greenhouse gas and fuel consumption efficiency. In this paper, compared and analyzed greenhouse emissions according to engine capacity, engine displacement, curb weight and sales volume of hybrid and internal combustion engine passenger vehicles. Hybrid emit 32~39% less greenhouse gas than internal combustion engines through the combined mode test method. Hybrid electric vehicle's curb weight was about 7% heavier on average for the same engine displacement, while greenhouse gas was about 36% lower. It was confirmed that in order to reduce the emission of pollutants of greenhouse gases as well as the air pollutants, it is necessary to expand the supply of eco-friendly vehicles.

Simulative consideration for w-shaped d.i. diesel combustion chamber system using spray wall impaction (분무충돌을 이용한 w-형 직접분사식 디젤연소실에 대한 계산적 고찰)

  • Park, K.
    • Journal of ILASS-Korea
    • /
    • v.2 no.2
    • /
    • pp.8-15
    • /
    • 1997
  • Combustion chamber systems using spray impinged on walls have been studied for improving combustion characteristics in high speed direct injection diesel engines. The fuel spray injected in a small combustion chamber may be easily impinged and deposited on the wall. The fuel deposit has been considered as the cause for unburned emission due to difficulty of fuel-air mixing. In this paper w-shaped combustion chamber which has four raised pips on the side wall is introduced and discussed by comparing with conventional chamber with no pips. The computer code employing new spray-wall interaction model in general non-orthogonal grids is used in here. The model is applied into the new chamber shape with raised pips. In this chamber system four-hole nozzle is used, and the sprays injected from the each hole impact on lands raised from the chamber wall surface. After impacting, the sprays break up into much smaller drops and distribute over all the chamber space, instead of distributing just near the wall surface in conventional omega-shape. The results showed the potential of the w-shaped chamber employing pips for dispersing droplets so as tn avoid the fuel deposit regions.

  • PDF

A Study of Effect of Droplet Distribution Functions in Modeling of Pressure-Swirl Atomizer (압력 선회 분사기 분무모델에서 액적분포함수 영향 고찰)

  • Moon, Yoon-Wan;Seol, Woo-Seok;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.117-120
    • /
    • 2007
  • This study investigated the spray modeling of the pressure-swirl atomizer installed in liquid rocket engine and the effect of drop distribution function especially. The $X^2$, originally implemented to KIVA, Rosin-Rammler and modified Rosin-Rammler distribution functions were investigated theoretically and compared to each other. Also, they were applied to pressure-swirl atomizer similar to the injector installed in liquid rocket engine to evaluate the feasibility for LRE injector. Among the distribution functions, original Rosin-Rammler distribution function was the most compatible with predicting the spray characteristics of pressure-swirl atomizer installed in liquid rocket engine.

  • PDF