• 제목/요약/키워드: Atomistic

검색결과 126건 처리시간 0.024초

실리콘 나노튜브 구조의 원자단위 시뮬레이션

  • 이준하;이흥주;이주율
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2004년도 춘계학술대회 발표 논문집
    • /
    • pp.63-66
    • /
    • 2004
  • The responses of hypothetical silicon nanotubes under torsion have been investigated using an atomistic simulation based on the Tersoff potential. A torque, proportional to the deformation within Hooke's law, resulted in the ribbon-like flattened shapes and eventually led to a breaking of hypothetical silicon nanotubes. Each shape change of hypothetical silicon nanotubes corresponded to an abrupt energy change and a singularity in the strain energy curve as a function of the external tangential force, torque, or twisted angle. The dynamics of silicon nanotubes under torsion can be modelled in the continuum elasticity theory.

  • PDF

금속-산화막-반도체 전계효과 트랜지스터의 불순물 분포 변동 효과에 미치는 이온주입 공정의 영향 (Effect of Random Dopant Fluctuation Depending on the Ion Implantation for the Metal-Oxide-Semiconductor Field Effect Transistor)

  • 박재현;장태식;김민석;우솔아;김상식
    • 전기전자학회논문지
    • /
    • 제21권1호
    • /
    • pp.96-99
    • /
    • 2017
  • 본 연구에서는 금속-산화막-반도체 전계효과 트랜지스터의 불순물 분포변동 효과에 미치는 halo 및 LDD 이온주입 공정의 영향을 3차원 소자 시뮬레이션을 통하여 확인하였다. 정확한 시뮬레이션 계산을 위해 kinetic monte carlo 모델을 적용하여 불순물 입자와 결함 낱낱의 거동을 계산하는 원자단위 시뮬레이션을 수행하였다. 문턱전압 및 on-current의 산포를 통해 확인한 결과 halo 이온주입 공정이 LDD 이온주입 공정보다 문턱전압 산포의 경우 약 6.45배 그리고 on-current 산포의 경우 2.46배 더 큰 영향을 미치는 특성을 확인하였다. 그리고 문턱전압과 on-current 산포를 히스토그램으로 나타내어 그 산포를 정규분포로 확인하였다.

Influence of indenter shape on nanoindentation: an atomistic study

  • Lai, Chia-Wei;Chen, Chuin-Shan
    • Interaction and multiscale mechanics
    • /
    • 제6권3호
    • /
    • pp.301-316
    • /
    • 2013
  • The influence of indenter geometry on nanoindentation was studied using a static molecular dynamics simulation. Dislocation nucleation, dislocation locks, and dislocation movements during nanoindentation into Al (001) were studied. Spherical, rectangular, and Berkovich indenters were modeled to study the material behaviors and dislocation activities induced by their different shapes. We found that the elastic responses for the three cases agreed well with those predicted from elastic contact theory. Complicated stress fields were generated by the rectangular and Berkovich indenters, leading to a few uncommon nucleation and dislocation processes. The calculated mean critical resolved shear stresses for the Berkovich and rectangular indenters were lower than the theoretical strength. In the Berkovich indenter case, an amorphous region was observed directly below the indenter tip. In the rectangular indenter case, we observed that some dislocation loops nucleated on the plane. Furthermore, a prismatic loop originating from inside the material glided upward to create a mesa on the indenting surface. We observed an unusual softening phenomenon in the rectangular indenter case and proposed that heterogeneously nucleating dislocations are responsible for this.

나노박막의 표면응력에 의한 평형상태에 대한 연구 (A study of surface stress effects on equilibrium states of thin nanofilm)

  • 김원배;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2009년도 정기 학술대회
    • /
    • pp.34-37
    • /
    • 2009
  • 본 논문에서는 원자적 계산(atomistic calculation)을 이용한 나노박막의 평형상태(self-equilibrium state)에 대한 해석기법을 제시한다. 두께가 얇은 나노박막은 표면 응력(surface stress)에 의한 영향으로 원자간 거리가 벌크상태의 거리보다 작아진다. 두께가 얇은 나노박막에서의 원자 사이의 거리는 표면 응력과 탄성계수들의 표현식으로 계산이 가능하며, 본 논문에서는 {100}, {111}, {110} 표면을 가지는 나노박막의 평형상태의 해석을 위한 해석적 방법을 제시한다. 원자 사이의 거리를 계산하기 위해서는 보다 정확한 표면 응력의 계산방법이 필요하다. 본 연구에서는 나노박막의 평형상태에 대한 해석을 위해 surface relaxation model을 제시하고, 이 모델을 이용하여 표면응력(surface stress)과 표면강성계수(surface stiffness tensor)와 같은 surface parameter의 계산을 수행한다. 본 논문에서 제시된 surface relaxation model을 검증하기 위하여 분자동역학 전산모사(molecular dynamics simulation)의 수치 결과를 제시하고, 본 연구에서 계산한 equilibrium strain과 비교 검증한다.

  • PDF

분자수준 시뮬레이션을 이용한 응력확대계수 및 전위이동에 관한 연구 (A Study on Stress Intensity Factors and Dislocation Emission via Molecular Dynamics)

  • 최덕기;김지운
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.830-838
    • /
    • 2000
  • The paper addresses an application of molecular dynamics technique for fracture mechanics. Molecular dynamics simulation is an atomistic approach, while typical numerical methods such as finite element methods are macroscopic. Using the potential functions, which express the energy of a molecular system, a virtual specimen with molecules is set up and the trajectory of every molecule can be calculated by Newton's equation of motion. Several three-dimensional models with various types of cracks are considered. The stress intensity factors, the sizes of plastic zone as well as the dislocation emission are sought to be compared with the analytical solutions, which result in good agreement.

분자동력학을 이용한 공구형상에 따른 미소절삭현상에 관한 연구 (A Study on the Microcutting for Configuration of Tools using Molecular Dynamics)

  • 뮨찬홍;김정두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.83-88
    • /
    • 1993
  • Recently, the analysis of microcutting with submicrometer depth of cut is tried to get a more high quality surface product, but to get a valuable result another method instead of conventional finite element method must be considered because finite elment method is impossible for a very small focused region and mesh size. As the altermative method, Molecular Dynamics or Statics is suggested and acceoted in the field of microcutting, indentation and crack propagation. In this paper using Molecuar Dynamics simulation, the phenomena of microcutting with subnanometer chip thickness is studied and the cutting mechanism for tool edge configuration is evaluated. As the result of simulation the atomistic chip formation is achieved.

  • PDF

INVESTIGATION OF ENERGETIC DEPOSITION OF Au/Au (001) THIN FILMS BY COMPUTER SIMULATION

  • Zhang, Q. Y.;Pan, Z. Y.;Zhao, G. O.
    • 한국진공학회지
    • /
    • 제7권s1호
    • /
    • pp.183-189
    • /
    • 1998
  • A new computer simulation method for film growth, the kinetic Monte Carlo simulation in combination with the results obtained from molecular dynamics simulation for the transient process induced by deposited atoms, was developed. The behavior of energetic atom in Au/Au(100) thin film deposition was investigated by the method. The atomistic mechanism of energetic atom deposition that led to the smoothness enhancement and the relationship between the role of transient process and film growth mechanism were discussed. We found that energetic atoms cannot affect the film growth mode in layer-by-layer at high temperature. However, at temperature of film growth in 3-dimensional mode and in quasi-two-dimensional mode, energetic atoms can enhance the smoothness of film surface. The enhancement of smoothness is caused by the transient mobility of energetic atoms and the suppression for the formation of 3-dimensional islands.

  • PDF

Pd-SiC 쇼트키 다이오드의 수소 가스 감지 특성 (A Study on a Palladium-Silicon Garbide Schottky Diode as a Hydrogen Gas Sensor)

  • 이주헌;이영환;김창교;조남인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.858-860
    • /
    • 1998
  • A Pd-SiC Schottky diode for detection of hydrogen gas operating at high temperature was fabricated. Hydrogen-sensing behaviors of Pd-SiC Schottky diode have been analyzed as a function of hydrogen concentration and temperature by I-V and ${\Delta}I$-t methods under steady-state and transient conditions. The effect of hydrogen adsorption on the barrier height was investigated. Analysis of the steady-state kinetics using I-V method confirmed that the atomistic hydrogen adsorption process is responsible for the barrier height change in the diode.

  • PDF

Theoretically-Guided Optimization of the Electro-Optic Activity of Organic Materials: 300 pm/V and Beyond

  • Sullivan, Phillip;Yiao, Li;Dalton, Larry
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.11-12
    • /
    • 2006
  • Incorporation of chromophores into multi-chromophore-containing dendrimers is shown to lead to a significant enhancement in electro-optic activity. These results are reasonably well simulated by pseudo-atomistic Monte Carlo calculations that permit dendrimers to interpenetrate (entangle). Calculations also lead to the correct prediction of material densities. An even greater enhancement in electro-optic activity is observed when such dendrimer materials are doped with a second chromophore. This latter effect may reflect an Ising-lattice-type phenomenon where one chromophore impacts the ordering of the other and vice versa.

  • PDF

On the continuum formulation for modeling DNA loop formation

  • Teng, Hailong;Lee, Chung-Hao;Chen, Jiun-Shyan
    • Interaction and multiscale mechanics
    • /
    • 제4권3호
    • /
    • pp.219-237
    • /
    • 2011
  • Recent advances in scientific computing enable the full atomistic simulation of DNA molecules. However, there exists length and time scale limitations in molecular dynamics (MD) simulation for large DNA molecules. In this work, a two-level homogenization of DNA molecules is proposed. A wavelet projection method is first introduced to form a coarse-grained DNA molecule represented with superatoms. The coarsened MD model offers a simplified molecular structure for the continuum description of DNA molecules. The coarsened DNA molecular structure is then homogenized into a three-dimensional beam with embedded molecular properties. The methods to determine the elasticity constants in the continuum model are also presented. The proposed continuum model is adopted for the study of mechanical behavior of DNA loop.