• Title/Summary/Keyword: Atomic parameters

Search Result 821, Processing Time 0.028 seconds

An Empirical Correlation for Critical Flow Rates of Subcooled Water Through Short Pipes with Small Diameters

  • Park, Choon-Kyung;Park, Jee-Won;Chung, Moon-Ki;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.35-44
    • /
    • 1997
  • Critical too-Phase flow rates of subcooled water through Short Pipes (L 140039n) with small diameters (D$\leq$7.15 min) have been experimentally investigated for wide ranges of subcooling (0~199$^{\circ}C$) and pressure (0.5~2.0 MPa). To examine the effects of various parameters (i.e., the location of flashing inception, the degree of subcooling, the stagnation temperature and pressure, and the pipe size) on the critical two-phase flow rates of subcooled water through short pipes with small diameters, a total of 135 runs were made for various combinations of test parameters using four different L/D test sections. Experimental results that show effect of various parameters on subcooled critical two phase flow rates are presented in the form of graphs such as the dimensionless mass flux ( $G^{*}$) versus the dimensionless subcooling ( $T_{sub}$$^{*}$) curve. An empirical correlation expressed in terms of a dimensionless subcooling is also obtained for subcooled two-phase flow rates through present test sections. Comparisons between the mass fluxes calculated by present correlation and a total of 755 selected experimental data points of 9 different investigators show that the agreement is fairly good except for very low subcooling data obtained from small L/D (less than 10) orifices.s.s.s.

  • PDF

NOTE ON THE GROUND STATES OF TWO-COMPONENT BOSE-EINSTEIN CONDENSATES WITH AN INTERNAL ATOMIC JOSEPHSON JUNCTION

  • Lu, Zhongxue;Liu, Zuhan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1441-1450
    • /
    • 2013
  • In this paper, we consider two-component Bose-Einstein condensates with an internal atomic Josephson junction in the general case, i.e., 0 < p < $\frac{2}{(d-2)^+}$. We prove existence and uniqueness results for the ground states, and obtain some properties of the ground states with large parameters.

Preparation and Characterization of Stable Dispersions of Ni Nanoparticles

  • Lee, Eun-Hee;Lee, Min-Ku;Rhee, Chang-Kyu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.413-414
    • /
    • 2006
  • The effects of several experimental parameters on the formation of stable Ni nanoparticles dispersion were investigated. The suspensions of Ni nanoparticles were produced in organic solvents using Hypermer KD-2 as a dispersant. The transmission profiles, particle size distribution, zeta potential, and visual inspection results were used to discuss the stability of the dispersion. The optimal conditions for the formation of stable dispersion are evaluated.

  • PDF

A Study on Determination of Fallout Pu in the Environment

  • Lee, Myung-Ho;Park, Young-Hyun;Do Won park;Park, Gun-Sik;Kim, Sang-Bog;Lee, Chang-Woo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.627-632
    • /
    • 1998
  • Using an ammonium oxalate-ammonium sulfate electrolyte, a simple, quantitative, and fast technique for preparing sources for analytical alpha spectrometry was developed. To determine the optimum conditions for plating plutonium, parameters such as current density .and pH of electrolyte affacting the electrodeposition of the plutonium have been investigated. An optimized electrodeposition step for the determination of plutonium has been validated with a result of application to IAEA-Reference Soils. The new method of fallout Pu determination has been applied to environmental samples such as soil, sediment and moss samples in Korea.

  • PDF

Prediction of the Dynamic Adsorption Behaviors of Uranium and Cobalt in a Fixed Bed by Surface Modified Activated Carbon

  • Park, Geun-Il;Lee, Jung-Won;Song, Kee-Chan;Kim, In-Tae;Kim, Kwang-Wook;Yang, Myung-Seung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.73-77
    • /
    • 2003
  • In order to predict the dynamic behaviors of uranium and cobalt in a fixed bed at various influent pH values of liquid waste, the adsorption system was regarded as multi-component adsorption between each ionic species in a solution. Langmuir isotherm parameters of each species were extracted by incorporating equilibrium data with the solution chemistry of uranium and cobalt using IAST. Prediction results were in good agreement with the experimental data, except for a high concentration and pH. Although there was some limitations in predicting the cobalt adsorption, this method may be useful in analyzing a complex adsorption system where various kinds of ionic species exist in a solution.

  • PDF

Improvement of Vibration Response of a Sensor Plate of Loose Parts Monitoring System in Nuclear Power Plants (원전 금속이물질 감시계통 센서 플레이트의 진동 특성 개선 연구)

  • Seo, Jung-Seok;Han, Soon-Woo;Lee, Jeong-Han;Kang, To;Park, Jin-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.148-154
    • /
    • 2017
  • This paper discussed design for resonance avoidance of sensor plates of loose-parts monitoring systems (LPMS) in nuclear power plants (NPP). An LPMS monitors impact of loose parts in primary loop of NPP by using accelerometers, which is mounted on sensor plates. Resonance of the plates may cause false alarms at frequencies over 10 kHz, which can be misunderstood as impact signals of loose parts with small mass and cause unnecessary response of NPP operators. Modal analysis was carried out for the existing sensor plate and design parameters affecting natural frequencies were chosen. Frequency response functions of plates were analyzed by changing the parameters and the optimized plate design for avoiding resonance was determined. Experiments was carried out for the plate specimen with improved design and verified the proposed approach and design.

ASSESSMENT OF MARS FOR DIRECT CONTACT CONDENSATION IN THE CORE MAKE-UP TANK (노심보충수탱크의 직접접촉응축에 대한 MARS의 계산능력평가)

  • Park, Keun Tae;Park, Ik Kyu;Lee, Seung Wook;Park, Hyun Sik
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.64-72
    • /
    • 2014
  • This study aimed at assessing the analysis capability of thermal-hydraulic computer code, MARS for the behaviors of the core make-up tank (CMT). The sensitivity study on the nodalization to simulate the CMT was conducted, and the MARS calculations were compared with KAIST experimental data and RELAP5/MOD3.3 calculations. The 12-node model was fixed through a nodalization study to investigate the effect of the number of nodes in the CMT (2-, 4-, 8-, 12-, 16-node). The sensitivity studies on various parameters, such as water subcooling of the CMT, steam pressure, and natural circulation flow were done. MARS calculations were reasonable in the injection time and the effects of several parameters on the CMT behaviors even though the mesh-dependency should be properly treated for reactor applications.

Investigating Dynamic Parameters in HWZPR Based on the Experimental and Calculated Results

  • Nasrazadani, Zahra;Behfarnia, Manochehr;Khorsandi, Jamshid;Mirvakili, Mohammad
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1120-1125
    • /
    • 2016
  • The neutron decay constant, ${\alpha}$, and effective delayed neutron fraction, ${\beta}_{eff}$, are important parameters for the control of the dynamic behavior of nuclear reactors. For the heavy water zero power reactor (HWZPR), this document describes the measurements of the neutron decay constant by noise analysis methods, including variance to mean (VTM) ratio and endogenous pulse source (EPS) methods. The measured ${\alpha}$ is successively used to determine the experimental value of the effective delayed neutron fraction as well. According to the experimental results, ${\beta}_{eff}$ of the HWZPR reactor under study is equal to 7.84e-3. This value is finally used to validate the calculation of the effective delayed neutron fraction by the Monte Carlo methods that are discussed in the document. Using the Monte Carlo N-Particle (MCNP)-4C code, a ${\beta}_{eff}$ value of 7.58e-3 was obtained for the reactor under study. Thus, the relative difference between the ${\beta}_{eff}$ values determined experimentally and by Monte Carlo methods was estimated to be < 4%.