• Title/Summary/Keyword: Atomic force microsope

Search Result 2, Processing Time 0.022 seconds

Synthesis of Single-Walled Carbon Nanotubes for Enhancement of Horizontal-Alignment and Density (단일벽 탄소나노튜브의 수평배향도 및 밀도 향상 합성)

  • Kwak, Eun-Hye;Im, Ho-Bin;Jeong, Goo-Hwan
    • Journal of Surface Science and Engineering
    • /
    • v.47 no.6
    • /
    • pp.347-353
    • /
    • 2014
  • We present a synthesis of single-walled carbon nanotubes(SWNTs) for enhancement of parallel-alignment and density using chemical vapor deposition with methane feed gas. As-purchased ST-cut quartz substrates were heat-treated and line-patterned by electron-beam lithography in order to grow SWNTs with parallel alignment. We investigated the effects of various synthesis parameters such as catalyst oxidation, reduction, and synthesis conditions in order to enhance both tube density and degree of parallel alignment. The condition of $1{\AA}$ of Fe catalyst film, atmospheric oxidation at $750^{\circ}C$ for 10 min, reduction under 400 Torr for 5 min, and growth at $865^{\circ}C$ under 300 Torr yields $33tubes/10{\mu}m$, which is the highest tube density with parallel alignment. Based on the results of atomic force microscope and Raman spectroscopy, it was found that SWNTs have diameter range of 0.8-2.0 nm. We believe that the present work would contribute to the development of SWNTs-based flexible functional devices.

THz near-field microsope with nanameter resolution (나노미터 분해능을 갖는 테라헤르츠 근접장 현미경)

  • Park, Hong-Kyu;Kim, Jeong-Hoi;Lee, Kyung-In;Han, Hae-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.515-516
    • /
    • 2006
  • A THz near-field microscope(THz NFM) is developed by a combination of THz time-domain spectroscopy and AFM(Atomic Force Microscopy). We have observed 80nm lateral resolution, demonstrating that the THz NFM technique has a great potential as a important probing tool for the analysis of the biological and semiconductor nanostructures.

  • PDF