• 제목/요약/키워드: Atomic bomb survivors

검색결과 14건 처리시간 0.033초

Cohort Study Protocol: A Cohort of Korean Atomic Bomb Survivors and Their Offspring

  • Seong-geun Moon;Ansun Jeong;Yunji Han;Jin-Wu Nam;Mi Kyung Kim;Inah Kim;Yu-Mi Kim;Boyoung Park
    • Journal of Preventive Medicine and Public Health
    • /
    • 제56권1호
    • /
    • pp.1-11
    • /
    • 2023
  • In 1945, atomic bombs were dropped on Hiroshima and Nagasaki. Approximately 70 000 Koreans are estimated to have been exposed to radiation from atomic bombs at that time. After Korea's Liberation Day, approximately 23 000 of these people returned to Korea. To investigate the long-term health and hereditary effects of atomic bomb exposure on the offspring, cohort studies have been conducted on atomic bomb survivors in Japan. This study is an ongoing cohort study to determine the health status of Korean atomic bomb survivors and investigate whether any health effects were inherited by their offspring. Atomic bomb survivors are defined by the Special Act On the Support for Korean Atomic Bomb Victims, and their offspring are identified by participating atomic bomb survivors. As of 2024, we plan to recruit 1500 atomic bomb survivors and their offspring, including 200 trios with more than 300 people. Questionnaires regarding socio-demographic factors, health behaviors, past medical history, laboratory tests, and pedigree information comprise the data collected to minimize survival bias. For the 200 trios, whole-genome analysis is planned to identify de novo mutations in atomic bomb survivors and to compare the prevalence of de novo mutations with trios in the general population. Active follow-up based on telephone surveys and passive follow-up with linkage to the Korean Red Cross, National Health Insurance Service, death registry, and Korea Central Cancer Registry data are ongoing. By combining pedigree information with the findings of trio-based whole-genome analysis, the results will elucidate the hereditary health effects of atomic bomb exposure.

Initial Report for the Radiation Effects Research Foundation F1 Mail Survey

  • Milder, CM;Sakata, R;Sugiyama, H;Sadakane, A;Utada, M;Cordova, KA;Hida, A;Ohishi, W;Ozasa, K;Grant, EJ
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.1313-1323
    • /
    • 2016
  • To study the full health effects of parental radiation exposure on the children of the atomic bomb survivors, the Radiation Effects Research Foundation developed a cohort of 76,814 children born to atomic bomb survivors (F1 generation) to assess cancer incidence and mortality from common adult diseases. In analyzing radiation-associated health information, it is important to be able to adjust for sociodemographic and lifestyle variations that may affect health. In order to gain this and other background information on the F1 cohort and to determine willingness to participate in a related clinical study, the F1 Mail Survey Questionnaire was designed with questions corresponding to relevant health, sociodemographic, and lifestyle indicators. Between the years 2000 and 2006, the survey was sent to a subset of the F1 Mortality Cohort. A total of 16,183 surveys were completed and returned: 10,980 surveys from Hiroshima residents and 5,203 from Nagasaki residents. The response rate was 65.6%, varying somewhat across parental exposure category, city, gender, and year of birth. Differences in health and lifestyle were noted in several variables on comparison across city and gender. No major differences in health, lifestyle, sociodemographics, or disease were seen across parental exposure categories, though statistically significant tests for heterogeneity and linear trend revealed some possible changes with dose. The data described herein provide a foundation for studies in the future.

Lifetime Risk Assessment of Lung Cancer Incidence for Nonsmokers in Japan Considering the Joint Effect of Radiation and Smoking Based on the Life Span Study of Atomic Bomb Survivors

  • Shimada, Kazumasa;Kai, Michiaki
    • Journal of Radiation Protection and Research
    • /
    • 제46권3호
    • /
    • pp.83-97
    • /
    • 2021
  • Background: The lifetime risk of lung cancer incidence due to radiation for nonsmokers is overestimated because of the use of the average cancer baseline risk among a mixed population, including smokers. In recent years, the generalized multiplicative (GM)-excess relative risk (ERR) model has been developed in the life span study of atomic bomb survivors to consider the joint effect of radiation and smoking. Based on this background, this paper discusses the issues of radiation risk assessment considering smoking in two parts. Materials and Methods: In Part 1, we proposed a simple method of estimating the baseline risk for nonsmokers using current smoking data. We performed sensitivity analysis on baseline risk estimation to discuss the birth cohort effects. In Part 2, we applied the GM-ERR model for Japanese smokers to calculate lifetime attributable risk (LAR). We also performed a sensitivity analysis using other ERR models (e.g., simple additive (SA)-ERR model). Results and Discussion: In Part 1, the lifetime baseline risk from mixed population including smokers to nonsmokers decreased by 54% (44%-60%) for males and 24% (18%-29%) for females. In Part 2, comparison of LAR between SA- and GM-ERR models showed that if the radiation dose was ≤200 mGy or less, the difference between these ERR models was within the standard deviation of LAR due to the uncertainty of smoking information. Conclusion: The use of mixed population for baseline risk assessment overestimates the risk for lung cancer due to low-dose radiation exposure in Japanese males.

Genetic radiation risks: a neglected topic in the low dose debate

  • Schmitz-Feuerhake, Inge;Busby, Christopher;Pflugbeil, Sebastian
    • Environmental Analysis Health and Toxicology
    • /
    • 제31권
    • /
    • pp.1.1-1.13
    • /
    • 2016
  • Objectives To investigate the accuracy and scientific validity of the current very low risk factor for hereditary diseases in humans following exposures to ionizing radiation adopted by the United Nations Scientific Committee on the Effects of Atomic Radiation and the International Commission on Radiological Protection. The value is based on experiments on mice due to reportedly absent effects in the Japanese atomic bomb (A-bomb) survivors. Methods To review the published evidence for heritable effects after ionising radiation exposures particularly, but not restricted to, populations exposed to contamination from the Chernobyl accident and from atmospheric nuclear test fallout. To make a compilation of findings about early deaths, congenital malformations, Down's syndrome, cancer and other genetic effects observed in humans after the exposure of the parents. To also examine more closely the evidence from the Japanese A-bomb epidemiology and discuss its scientific validity. Results Nearly all types of hereditary defects were found at doses as low as one to 10 mSv. We discuss the clash between the current risk model and these observations on the basis of biological mechanism and assumptions about linear relationships between dose and effect in neonatal and foetal epidemiology. The evidence supports a dose response relationship which is non-linear and is either biphasic or supralinear (hogs-back) and largely either saturates or falls above 10 mSv. Conclusions We conclude that the current risk model for heritable effects of radiation is unsafe. The dose response relationship is non-linear with the greatest effects at the lowest doses. Using Chernobyl data we derive an excess relative risk for all malformations of 1.0 per 10 mSv cumulative dose. The safety of the Japanese A-bomb epidemiology is argued to be both scientifically and philosophically questionable owing to errors in the choice of control groups, omission of internal exposure effects and assumptions about linear dose response.

Statistical Assessment on Cancer Risks of Ionizing Radiation and Smoking Based on Poisson Models

  • Tomita, Makoto;Otake, Masanori;Moon, Sung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.581-598
    • /
    • 2006
  • In many epidemiological and medical studies, a number of cancer mortalities in categorical classification may be considered as having Poisson distribution with person-years at risk depending upon time. The cancer mortalities have been evaluated by additive or multiplicative models with regard to background and excess risks based on several covariances such as sex, age at the time of bombings, time at exposure, or ionizing radiation, cigarette smoking habits, duration of smoking habits, etc. An interest herein is to examine an additive, synergistic, or antagonistic relationship between radiation exposures and cigarette smoking habits for cancer mortalities. The results revealed a highly significant antagonistic in uence for cancer mortalities from all non-hematologic findings, lung and respiratory system with negative interaction between radiation exposures and cigarette smoking amounts.

  • PDF

SUMRAY: R and Python Codes for Calculating Cancer Risk Due to Radiation Exposure of a Population

  • Michiya Sasaki;Kyoji Furukawa;Daiki Satoh;Kazumasa Shimada;Shin'ichi Kudo;Shunji Takagi;Shogo Takahara;Michiaki Kai
    • Journal of Radiation Protection and Research
    • /
    • 제48권2호
    • /
    • pp.90-99
    • /
    • 2023
  • Background: Quantitative risk assessments should be accompanied by uncertainty analyses of the risk models employed in the calculations. In this study, we aim to develop a computational code named SUMRAY for use in cancer risk projections from radiation exposure taking into account uncertainties. We also aim to make SUMRAY publicly available as a resource for further improvement of risk projection. Materials and Methods: SUMRAY has two versions of code written in R and Python. The risk models used in SUMRAY for all-solid-cancer mortality and incidence were those published in the Life Span Study of a cohort of the atomic bomb survivors in Hiroshima and Nagasaki. The confidence intervals associated with the evaluated risks were derived by propagating the statistical uncertainties in the risk model parameter estimates by the Monte Carlo method. Results and Discussion: SUMRAY was used to calculate the lifetime or time-integrated attributable risks of cancer under an exposure scenario (baseline rates, dose[s], age[s] at exposure, age at the end of follow-up, sex) specified by the user. The results were compared with those calculated using another well-known web-based tool, Radiation Risk Assessment Tool (RadRAT; National Institutes of Health), and showed a reasonable agreement within the estimated confidential interval. Compared with RadRAT, SUMRAY can be used for a wide range of applications, as it allows the risk projection with arbitrarily specified risk models and/or population reference data. Conclusion: The reliabilities of SUMRAY with the present risk-model parameters and their variance-covariance matrices were verified by comparing them with those of the other codes. The SUMRAY code is distributed to the public as an open-source code under the Massachusetts Institute of Technology license.

Radiosensitivity and the Occurrence of Radiation-related Cataract and Epilation

  • Tomita, Makoto;Otake, Masanori;Moon, Sung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권3호
    • /
    • pp.889-904
    • /
    • 2006
  • Our purpose is to ascertain, if possible, whether atomic bomb survivors with cataracts and epilation were more radiosensitive than those survivors with cataracts but without epilation. A major ophthalmologic survey was conducted in Hiroshima and Nagasaki in 1963-64. At that time, 2125 individuals were examined. Among these individuals, estimated eye organ doses, based on the DS86 dosimetry system, and information on the occurrence of epilation within the first 60 days following the bombings are available on 1742. In the analysis of these data we have assumed that each individual represents a sample of one from a binomial distribution, and that the occurrence of cataracts and epilation are independent biological phenomena. We got following results. The threshold for cataract induction and its 95% confidence limits have been estimated from data on the occurrence of cataract and epilation. Among the 1742 study subjects, 40 had both cataracts and severe epilation. The estimated threshold based on these cases is 0.98 sievert(Sv), with 95% lower and upper confidence bounds of 0.72, and 1.32 Sv, respectively, and is highly statistically significant. Among the 27 cases of cataracts where severe epilation was not reported, the estimated threshold is 1.74 Sv with 95% lower and upper confidence bounds of 1.21 Sv, and "not estimable". The difference between these two estimates is not statistically significant although the effect of dose is highly significant in both instances. The potential importance of biases in the DS86 dose estimates is discussed. The difference between the threshold estimated from cataract cases with epilation and that from cases without epilation is not statistically significant at the 5% or 10% level, and thus affords no support for the notion of increased radiosensitivity.

  • PDF

Risk Factors for Breast Cancer, Including Occupational Exposures

  • Weiderpass, Elisabete;Meo, Margrethe;Vainio, Harri
    • Safety and Health at Work
    • /
    • 제2권1호
    • /
    • pp.1-8
    • /
    • 2011
  • The knowledge on the etiology of breast cancer has advanced substantially in recent years, and several etiological factors are now firmly established. However, very few new discoveries have been made in relation to occupational risk factors. The International Agency for Research on Cancer has evaluated over 900 different exposures or agents to-date to determine whether they are carcinogenic to humans. These evaluations are published as a series of Monographs (www.iarc.fr). For breast cancer the following substances have been classified as "carcinogenic to humans" (Group 1): alcoholic beverages, exposure to diethylstilbestrol, estrogen-progestogen contraceptives, estrogen-progestogen hormone replacement therapy and exposure to X-radiation and gamma-radiation (in special populations such as atomic bomb survivors, medical patients, and in-utero exposure). Ethylene oxide is also classified as a Group 1 carcinogen, although the evidence for carcinogenicity in epidemiologic studies, and specifically for the human breast, is limited. The classification "probably carcinogenic to humans" (Group 2A) includes estrogen hormone replacement therapy, tobacco smoking, and shift work involving circadian disruption, including work as a flight attendant. If the association between shift work and breast cancer, the most common female cancer, is confirmed, shift work could become the leading cause of occupational cancer in women.

Simple power analysis in causal mediation models for a dichotomous outcome based on the mediation proportion

  • Kim, Young Min;Cologne, John Bennett;Cullings, Harry Michael
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권3호
    • /
    • pp.669-684
    • /
    • 2017
  • Mediation models are widely used in many fields of research and have recently gained attention in epidemiology. The mediation proportion is a standard measure to evaluate what part of the total exposure effect on an outcome may be explained by a particular mediator and to examine how important that pathway is relative to the overall exposure effect. A common question is how large a sample size is needed to achieve high statistical power or, equivalently, what magnitude of effect can be detected. Current power and sample size calculations for mediation analysis are limited and additional research is needed. We therefore propose a computer-intensive power analysis using the mediation proportion. We conduct simulation studies to calculate statistical powers and sample sizes. And then, we illustrate our power analysis using an example from the Adult Health Study of atomic-bomb survivors and demonstrate that the method is relatively straightforward to understand and compute.

저선량 방사선 노출과 건강 영향에 대한 역학적 고찰 (Epidemiology of Low-Dose Ionizing Radiation Exposure and Health Effects)

  • 이원진
    • 한국환경보건학회지
    • /
    • 제49권1호
    • /
    • pp.1-10
    • /
    • 2023
  • Low-dose radiation exposure has received considerable attention because it reflects the general public's type and level of exposure. Still, controversy remains due to the relatively unclear results and uncertainty in risk estimation compared to high-dose radiation. However, recent epidemiological studies report direct evidence of health effects for various types of low-dose radiation exposure. In particular, international nuclear workers' studies, CT exposure studies, and children's cancer studies on natural radiation showed significantly increased cancer risk among the study populations despite their low-dose radiation exposure. These studies showed similar results even when the cumulative radiation dose was limited to an exposure group of less than 100 mGy, demonstrating that the observed excess risk was not affected by high exposure. A linear dose-response relationship between radiation exposure and cancer incidence has been observed, even at the low-dose interval. These recent epidemiological studies include relatively large populations, and findings are broadly consistent with previous studies on Japanese atomic bomb survivors. However, the health effects of low-dose radiation are assumed to be small compared to the risks that may arise from other lifestyle factors; therefore, the benefits of radiation use should be considered at the individual level through a balanced interpretation. Further low-dose radiation studies are essential to accurately determining the benefits and risks of radiation.