• Title/Summary/Keyword: Atmospheric sampling

Search Result 417, Processing Time 0.025 seconds

Analysis of Organic Molecular Markers in Atmospheric Fine Particulate Matter: Understanding the Impact of "Unknown" Point Sources on Chemical Mass Balance Models

  • Bae, Min-Suk;Schauer, James J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.3
    • /
    • pp.219-236
    • /
    • 2009
  • Particle-phase organic tracers (molecular markers) have been shown to be an effective method to assess and quantify the impact of sources of carbonaceous aerosols. These molecular markers have been used in chemical mass balance (CMB) models to apportion primary sources of organic aerosols in regions where the major organic aerosol source categories have been identified. As in the case of all CMB models, all important sources of the tracer compounds must be included in a Molecular Marker CMB (MM-CMB) model or the MMCMB model can be subject to biases. To this end, the application of the MM-CMB models to locations where reasonably accurate emissions inventory of organic aerosols are not available, should be performed with extreme caution. Of great concern is the potential presence of industrial point sources that emit carbonaceous aerosols and have not been well characterized or inventoried. The current study demonstrates that emissions from industrial point sources in the St. Louis, Missouri area can greatly bias molecular marker CMB models if their emissions are not correctly addressed. At a sampling site in the greater St. Louis Area, carbonaceous aerosols from industrial point sources were found to be important source of carbonaceous aerosols during specific time periods in addition to common urban sources (i.e. mobile sources, wood burning, and road dust). Since source profiles for these industrial sources have not been properly characterized, method to identify time periods when point sources are impacting a sampling site, needs to avoid obtaining biases source apportionment results. The use of real time air pollution measurements, along with molecular marker measurements, as a screening tool to identify when point sources are impacting a receptor site is presented.

Characteristics of and Affecting Factors on the Concentrations of Polycyclic Aromatic Hydrocarbons Associated with PM10in the Urban Atmosphere (도시 대기 중 PM10에 함유된 다환방향족탄화수소의 농도분포특성과 주요 영향인자)

  • 최진수;백성옥
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.1
    • /
    • pp.33-44
    • /
    • 2003
  • The atmospheric concentrations of particulate polycyclic aromatic hydrocarbons (PAHs) associated with PM$_{10}$ were determined in Taegu metropolitan area. Sampling was undertaken every five days throughout one year period from 1993 to 1994 at four sites, representing a residential, a commercial, an industrial, and a sub-urban area, respectively. Benzo (e) pyrene, benzo (k) fluoranthene, and chrysene were found to be the most abundant com-pounds during the study period. The concentrations of benzo (a) pyrene, one of carcinogenic PAHs, ranged 2.0~4.8 ng/㎥ in winter and 0.5~1.5 ng/㎥ in summer season, indicating a marked seasonal variation. It was found that there were very similar patterns in the relative profiles of PM$_{10}$-bound PAH concentrations among the four sampling sites, while the absolute levels of each PAH were significantly different from each site. In addition, the patterns of summer to winter concentration ratios for each PAH were almost identical between the different sites. Despite difficulties due to the lack of good markers for specific sources in the target compounds, we were able to evaluate and describe the effects of vehicle emissions and space heatings, using relative profiles of PAHs, winter to summer (W/S) ratios, PAH-to-PAH ratios, and the result of principal component analysis. As a con-sequence, it was concluded that the vehicle emissions in urban and sub -urban areas are likely to be a major contributor for PAH loadings in the ambient atmosphere during the non-heating season, while the contributions of residential heating and local industrial oil burning emissions were highly significant in heating season.son.

Application of Semi-continuous Ambient Aerosol Collection System for Elemental Analysis (대기입자의 원소성분 배출특성연구를 위한 반-연속식 입자채취시스템 적용)

  • Park, Seung-Shik;Ko, Jae-Min;Lee, Dong-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.39-51
    • /
    • 2012
  • Aerosol slurry samples were collected in 60-min interval using Korean Semi-continuous Elements in Aerosol Sampler (KSEAS) between May 19 and June 6, 2010 at an urban site of Gwangju. The $PM_{2.5}$ samples were collected with a flow rate of 16.7 L/min and particles are grown by condensation of water vapor in a condenser maintained at ${\sim}5^{\circ}C$ after saturation by direct injection of steam. The resulting droplets are collected in a liquid slurry with a airdroplet separator. Concentrations of 16 elements (Al, Fe, Mn, Ca, K, Cu, Zn, Pb, Cd, Cr, Ti, V, Ni, Co, As, Se) in the collected slurry samples were determined off-line by ICP-MS. KSEAS sample analysis encompassed the sampling periods for which 24-hr average elemental species concentrations were calculated for comparison with those derived from 24-hr integrated filter samples. Relationship between elemental species measured by two methods indicated high correlation coefficients (r), mostly greater than r of 0.80. However, we note that concentrations of Al, K, Ca, Mn, and Fe, which are often associated with crustal elemental particles, in the KSEAS samples, were substantially lower (1.4~11 times) than those found in the typical filter-based samples. This discrepancy is probably due to difficulties in transferring insoluble dust particles to the collection vials in the KSEAS. Temporal profiles of elemental concentrations indicate that some transient events in their concentrations are observed over the sampling periods. For the elemental species studied, atmospheric concentrations during the transient events increased by factors of 4 in Mn~80 in Zn, compared to their background levels. Principle component analyses were applied to the hourly KSEAS data sets to identify sources affecting the concentrations of the metal constituents observed. In this study, we conclude that hourly measurements for particle-bound elemental constituents were extremely useful for revealing the short-term variability in their concentrations and developing insights into their sources.

Characterization of Coarse, Fine, and Ultrafine Particles Generated from the Interaction between the Tire and the Road Pavement (차량 주행 시 타이어와 도로의 경계면에서 발생하는 조대입자, 미세입자 및 초미세입자의 특성 연구)

  • Kwak, Jihyun;Lee, Sunyoup;Lee, Seokhwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.656-667
    • /
    • 2013
  • The non-exhaust coarse, fine, and ultrafine particles were characterized by on-road driving measurements using a mobile sampling system. The on-road driving measurements under constant speed driving revealed that mass concentrations of roadway particles (RWPs) were distributed mainly in a size range of 2~3 ${\mu}m$ and slightly increased with increasing vehicle speed. Under braking conditions, the mode diameters of the particles were generally similar with those obtained under constant speed conditions. However, the PM concentrations emitted during braking condition were significantly higher than those produced under normal driving conditions. Higher number concentrations of ultrafine particles smaller than 70 nm were observed during braking conditions, and the number concentration of particles sampled 90 mm above the pavement was 6 times higher than that obtained 40 mm above the pavement. Under cornering conditions, the number concentrations of RWPs sampled 40 mm above the pavement surface were higher than those sampled 90 mm above the pavement. This might be explained that a nucleation burst of a lot of vapor evaporated from the interaction between the tire and the road pavement under braking conditions continuously occurred by cooling during the transport to the sampling height 90 mm, while, for the case of cornering situations, the ultrafine particle formation was completed before the transport to the sampling height of 40 mm.

Comparison of Two Experimental Approaches to Test Temporal Storability of Reduced Sulfur Compounds in Whole Sampling Method (환원황화합물에 대한 용기채취법의 비교 연구)

  • Jo, Sang-Hee;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.306-315
    • /
    • 2012
  • In this study, storage stability of reduced sulfur compounds ($H_2S$, $CH_3SH$, DMS, $CS_2$, and DMDS) and $SO_2$ in sampling bags was investigated in terms of two contrasting storage approaches between forward (F) and reverse (R) direction. The samples for the F method were prepared at the same time and analyzed sequentially through time. In contrast, those of reverse (R) method were prepared sequentially in advance and analyzed all at once upon the preparation of the last sample. In addition, relative performance between two different bag materials (PVF and PEA) was also assessed by using 100 ppb standard. The response factors (RF) of gaseous RSC samples were determined by gas chromatography/pulsed flame photometric detector (GC/PFPD) combined with air server (AS)/thermal desorber (TD) system at storage intervals of 0, 1, and 3 days. There is no statistical difference in all RSCs between two storage methods. However, the results of relative recovery indicated 2.58~12.8% differences in compound type between the two storage methods. Moreover, loss rates and storage stability of $H_2S$ and $SO_2$ were considerably affected by bag materials than any other variables. Therefore, some considerations about storage methods (or bag material types) for sulfur compounds are needed if stored by sampling bag method.

Comparison of Sampling and Analytical Methods for Determining Airborne Hexavalent Chromium -Limit of Detection, Accuracy and Precision of Analytical Procedures (공기중 6가 크롬 측정 방법 비교 -검출한계, 정확도 및 정밀도-)

  • 신용철;이병규;이지태
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.1
    • /
    • pp.39-49
    • /
    • 2002
  • In this study, limits of detection (LOD), accuracy and precision of four sampling/ analytical methods were evaluated and compared for the determination of airborne hexavalent chromium, Cr (VI). The methods include : (1) a combination of the National Institute for Occupational Safety and Health (NIOSH) Method 7600/U. S. Environmental Protection Agency (EPA) Method 218.6 (NIOSH/EPA Method) proposed by Shin and Paik, 2) two impinger methods using 2% NaOH/3% Na$_2$CO$_3$. (3) same as (2) but with 0.02 N NaHCO$_3$absorbing solution, and (4) the Occupational Safety and Health (OSHA) Method ID-215. An ion chromatograph/visible absorbance detector was used for the analysis of Cr (VI) in sample solution. Limit of detection (LOD) , analytical accuracy, and precision were also tested using Cr (VI) spike samples. Recoveries (as index of accuracy) and coefficient of variation (CV) (as a index of precision) were determined. Two-way ANOVA and Turkey's test were performed to test the significance in differences among recoveries and CVs of the methods. In all the methods, the peaks of Cr (VI) were separated sharply on chromatograms and exhibited a strong linearity with Cr (VI) concentrations in solution. The correlation coefficients of calibration curves typically ranged from 0.9997 to 0.9999, and the analytical LODs from 0.025 to 0.1$\mu\textrm{g}$/sample. All the method had good sensitivities and linearities between Cr (VI) levels and peak areas. The accuracies (% mean recoveries) of the methods ranged from 80.1 to 104.2%, while the precisions (pooled coefficient of variation) ranged from 3.16 to 4.43%. The impinger methods showed higher recoveries ( > 95%) than those of the PVC filter methods (the OSHA Method and the NIOSH/EPA Method). It was assumed that Cr (VI) on PVC filter was exposed to air and reduced to trivalent chromium, Cr (III), whereas it was stabilized in alkali solution contained in impinger. Thus, a special treatment of Cr (VI) samples collected on PVC filters may be required.

The Concentrations of Sulfur Compounds and Sensation of Odor in the Residential Area Around Banwol-Sihwa Industrial Complex (반월.시화공단 주변 주거지역의 악취현황 및 황화합물의 체감도)

  • Kim, Jong-Bo;Jeong, Sang-Jin;Song, Il-Seok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.147-157
    • /
    • 2007
  • This study was carried out to investigate the characteristics of fourteen odor compounds from a total of 10 sampling sites in residential areas around Banwol-Sihwa industrial complex. The measurement data are analyzed and compared with sensation of odor unit. Only a hydrogen sulfide out of four sulfur compounds was quantified above the detection limit (0.06 ppb) in the residential area around Banwol industrial complex with leather companies and a sewage treatment plant. The concentrations of VOCs were higher than those measured from a big city, and styrene showed the relatively high concentration from all sampling sites ($2.1{\sim}37.8\;ppb$). In the case of carbonyl compounds, acetaldehyde was found most frequently with the mean of 3.97 ppb, and its concentration difference was not significant between Banwol and Sihwa industrial complex. Of the nitrogen compounds, ammonia was measured at the relatively high concentration from all the sampling sites ($12{\sim}707\;ppb$), and a trimethylamine was found at the odor threshold level (0.1 ppb). The concentrations of styrene and ammonia showed relatively seasonal variation, the concentration of styrene in summer was five times higher than that in autumn, the concentration of ammonia in autumn was two times higher than that in summer. However other odorous compounds did not show such strong seasonal variation. Odor-concentration relationship between odor unit and $H_{2}S$ concentrations from industrial sources was examined and used as odor sensation evaluation, and thus the neighbourhood odor complaints maybe caused during the four seasons from the results.

Sampling and Analysis of Acidic Air Pollutants Using an Annular Denuder System during the Summer Season in Chongju City (디누더 측정기를 이용한 여름철 청주시의 산성오염물질 측정과 분석)

  • 이학성;강병욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.441-448
    • /
    • 1996
  • The cyclone/annular denuder system/filter pack sampling system (ADS) was used to collect the acidic air pollutants in Chongju city. The data set was collected on nine different days with 24 hour sampling period from July 27 through August 27, 1995. The chemical species measured were $HNO_3, HNO_2, SO_2 and NH_3$ in the gas phase, and $PM_{2.5}(d_P<2.5 \mum), SO_4^{2-}, NO_3^- and NH_4^+$ in the particulate phase. Mean concentrations measured from this study were: $0.90 \mug/m^3 for HNO_3, 1.27 \mug/m^3 for HNO_2, 10.9 \mug/m^3 for SO_2, 4.82 \mug/m^3 for NH_3, 27.5 \mug/m^3 for PM_{2.5}, 5.24 \mug/m^3 for SO_4^{2-}, 1.22 \mug/m^3 for NO_3^-, and 1.64 \mug/m^3 for NH_4^+$. The fine particle $(PM_{2.5})$ mass measured for the ADS samples was slightly higher than the fine particle mass measured for the corresponding dichotomous sampler. For the wind coming from Chongju industrial complex the concentrations of acidic air pollutants measured were higher when compared with other directions. Specially, $SO_2 and PM_{2.5}$ concentrations for the wind coming from Chongju industrial complex were 3.6 and about 2 times, respectively, higher than those of other wind directions. High correlations were observed between $PM_{2.5} and fine particle's ion components $(r=0.82 with SO_4^{2-}, r=0.76 with NO_3^- and r=0.89 with NH_4^+). NH_4^+ and SO_4^{2-}$ was also highly correlated (r=0.97).

  • PDF

Quantitative Analysis of Random Errors of the WRF-FLEXPART Model for Backward-in-time Simulation over the Seoul Metropolitan Area (수도권 영역의 시간 후방 모드 WRF-FLEXPART 모의를 위한 입자 수에 따른 무작위 오차의 정량 분석)

  • Woo, Ju-Wan;Lee, Jae-Hyeong;Lee, Sang-Hyun
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.551-566
    • /
    • 2019
  • Quantitative understanding of a random error that is associated with Lagrangian particle dispersion modeling is a prerequisite for backward-in-time mode simulations. This study aims to quantify the random error of the WRF-FLEXPART model and suggest an optimum number of the Lagrangian particles for backward-in-time simulations over the Seoul metropolitan area. A series of backward-in-time simulations of the WRF-FLEXPART model has conducted at two receptor points by changing the number of Lagrangian particles and the relative error, as a quantitative indicator of random error, is analyzed to determine the optimum number of the release particles. The results show that in the Seoul metropolitan area a 1-day Lagrangian transport contributes 80~90% in residence time and ~100% in atmospheric enhancement of carbon monoxide. The relative errors in both the residence time and the atmospheric concentration enhancement are larger when the particles release in the daytime than in the nighttime, and in the inland area than in the coastal area. The sensitivity simulations reveal that the relative errors decrease with increasing the number of Lagrangian particles. The use of small number of Lagrangian particles caused significant random errors, which is attributed to the random number sampling process. For the particle number of 6000, the relative error in the atmospheric concentration enhancement is estimated as -6% ± 10% with reduction of computational time to 21% ± 7% on average. This study emphasizes the importance of quantitative analyses of the random errors in interpreting backward-in-time simulations of the WRF-FLEXPART model and in determining the number of Lagrangian particles as well.

Chemical Characteristics of Heavy Metals of PM2.5 in Atmosphere (대기 중 PM2.5의 중금속 성분의 화학적 특성)

  • Jeon, Hye-Li;Choi, Su-Hyeon;Im, Ji-Young;Park, Hee-Jin;Hong, Eun-Ju;Son, Bu-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.3
    • /
    • pp.233-240
    • /
    • 2012
  • Objectives: The changes in atmospheric $PM_{2.5}$ concentrations were extensively studied in one metropolitan city (Incheon), two small and medium sized cities (Gunsan, Cheonan), and a rural area (Gosan in Jeju). The concentrations of heavy metals (Cr, Mn, Fe, Ni, Cu, Zn, Al, Pb) and the component features of $PM_{2.5}$ were determined for these areas. Methods: This study sampled $PM_{2.5}$ at the designated locations in the metropolitan (Incheon), small and medium sized cities (Gunsan in Jeonbuk and Cheonan in Chungnam), and rural area (Gosan in Jeju) to investigate concentrations with a sampling device (Sequential sampler, APM Eng., Korea). Sampling was undertaken over months, from June 26 to November 26, 2009. Sampling was conducted a total of 44 times, with routine sampling at intervals of six days (24 total times) and intensive sampling (20 total times) during the summer and fall. Mass concentration of $PM_{2.5}$ was evaluated and the concentrations of heavy metals (Cr, Mn, Fe, Ni, Cu, Zn, Al, Pb) were analyzed. Results: The geometric average of concentrations of $PM_{2.5}$ per district was $35.289{\mu}g/m^3$ for Cheonan, $29.955{\mu}g/m^3$ for Incheon, $24.119{\mu}g/m^3$ for Gunsan, and $18.773{\mu}g/m^3$ for Jeju, respectively. The average concentration of $PM_{2.5}$ in Cheonan was the highest. The seasonal concentration distributions per district showed Cheonan $33.387{\mu}g/m^3$, Incheon at $31.550{\mu}g/m^3$, Gunsan $22.900{\mu}g/m^3$, and Jeju $18.900{\mu}g/m^3$ in the summer. For the autumn, the concentrations were $36.873{\mu}g/m^3$ in Cheonan, $28.625{\mu}g/m^3$ in Incheon, $25.227{\mu}g/m^3$ in Gunsan, and $18.667{\mu}g/m^3$ in Jeju. According to the collected data, the concentration showed a tendency to rise during the autumn in all of these regions with the exception of Incheon. For heavy metal distribution per district, Fe showed an elevated concentration during the summer while high concentrations of Pb and Zn occurred during the autumn. Conclusion: These results demonstrated that atmospheric factors affected the concentrations of heavy metals. The results of this study could be used as foundational data for setting environmental air standards focusing on a $PM_{2.5}$ receptor.