• 제목/요약/키워드: Atmospheric model

검색결과 2,060건 처리시간 0.024초

大氣汚染濃度에 관한 動的確率모델 (A Dynamic-Stochastic Model for Air Pollutant Concentration)

  • 김해경
    • 한국대기환경학회지
    • /
    • 제7권3호
    • /
    • pp.156-168
    • /
    • 1991
  • The purpose of this paper is to develop a stochastic model for daily sulphur dioxide $(SO_2)$ concentrations prediction in urban area (Seoul). For this, the influence of the meteorological parameters on the $SO_2$ concentrations is investigated by a statistical analysis of the 24-hr averaged $SO_2$ levels of Seoul area during 1989 $\sim$ 1990. The annual fluctuations of the regression trend, periodicity and dependence of the daily concentration are also analyzed. Based on these, a nonlinear regression transfer function model for the prediction of daily $SO_2$ concentrations is derived. A statistical procedure for using the model to predict the concentration level is also proposed.

  • PDF

大氣汚染濃度에 관한 確率모델 (A Stochastic Model for Air Pollutant Concentration)

  • 김해경
    • 한국대기환경학회지
    • /
    • 제7권2호
    • /
    • pp.127-136
    • /
    • 1991
  • This paper is concerned with the development and application of a stochastic model for daily sulphur dioxide $(SO_2)$ concentrations in urban area (Seoul). For this, the characteristics of the regression trend, periodicity and dependence of the daily $SO_2$ concentration are investigated by a statistisical analysis of the daily average $SO_2$ values measured in Seoul area during 1989 $\sim$ 1990. Based on these, nonlinear regression time series model for the prediction of daily $SO_2$ concentrations is derived. A statistical procedure for using the model to predict the concentration level is also proposed.

  • PDF

東海에서의 파랑추산을 위한 심해파랑모형에 대한 연구 (Deep Water Wave Model for the East Sea)

  • 윤종태
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.116-128
    • /
    • 1999
  • A deep water wave prediction model applicable to the East Sea is presnted. This model incorporates rediative transter of energy specrum, atmospheric input form the wind, nonlinear interaction, and energy dissipation by white capping. The propagation scheme by Gadd shows satisfactory results and the characteristics of the nonlinear interaction is simulated well by discrete interaction approximatiion. The application of the model to the sea around the Korean Peninsula shows reasonable agreement with the observation.

  • PDF

A Proposal for a Predictive Model for the Number of Patients with Periodontitis Exposed to Particulate Matter and Atmospheric Factors Using Deep Learning

  • Septika Prismasari;Kyuseok Kim;Hye Young Mun;Jung Yun Kang
    • 치위생과학회지
    • /
    • 제24권1호
    • /
    • pp.22-28
    • /
    • 2024
  • Background: Particulate matter (PM) has been extensively observed due to its negative association with human health. Previous research revealed the possible negative effect of air pollutant exposure on oral health. However, the predictive model between air pollutant exposure and the prevalence of periodontitis has not been observed yet. Therefore, this study aims to propose a predictive model for the number of patients with periodontitis exposed to PM and atmospheric factors in South Korea using deep learning. Methods: This study is a retrospective cohort study utilizing secondary data from the Korean Statistical Information Service and the Health Insurance Review and Assessment database for air pollution and the number of patients with periodontitis, respectively. Data from 2015 to 2022 were collected and consolidated every month, organized by region. Following data matching and management, the deep neural networks (DNN) model was applied, and the mean absolute percentage error (MAPE) value was calculated to ensure the accuracy of the model. Results: As we evaluated the DNN model with MAPE, the multivariate model of air pollution including exposure to PM2.5, PM10, and other atmospheric factors predict approximately 85% of the number of patients with periodontitis. The MAPE value ranged from 12.85 to 17.10 (mean±standard deviation=14.12±1.30), indicating a commendable level of accuracy. Conclusion: In this study, the predictive model for the number of patients with periodontitis is developed based on air pollution, including exposure to PM2.5, PM10, and other atmospheric factors. Additionally, various relevant factors are incorporated into the developed predictive model to elucidate specific causal relationships. It is anticipated that future research will lead to the development of a more accurate model for predicting the number of patients with periodontitis.

지표면 변화와 인공열이 바람장에 미치는 영향에 관한 수치 시뮬레이션 (Numerical Simulation of Effect of Urban Land-use Type and Anthropogenic Heat on Wind Field)

  • 홍정혜;김유근
    • 한국대기환경학회지
    • /
    • 제16권5호
    • /
    • pp.511-520
    • /
    • 2000
  • The urban atmosphere is characterized by th difference in surface and atmospheric environment between urban and more natural area. To investigate th climatic effect of land use type and anthropogenic heat of urban on wind field, numerical simulations were carried out under typical summer synoptic condition. The wind model PNU_MCM(Pusan National University Mesoscale Circulation Model) is based on the three-dimensional Boussinesq equations, taking into account the hydrostatic assumption . Since lane-use differs over every subdivision on Pusan the surface energy budget model includes sub0grid parameterization scheme which can calculate the total heat flux over a grid surface composed of different surfaces. The simulated surface wind agrees well with the observed value, and average over 6 days which represent typical summer lan-sea breeze days, August 1998, i.e. negligible gradient winds and almost clear skies. Urbanization makes sea-breeze enhance at day and reduce land-breeze at night. The results show that contribution of land-use type is much larger than that of anthropogenic heat in Pusan.

  • PDF

환경영향평가용 대기질 모델을 위한 AWS자료의 4 차원 동화 기법에 관한 고찰 (On the applications of AWS into the Four-Dimensional Data Assimllation Technique for 3 Dimensional Air Quality Model in Use of Atmospheric Environmental Assessment)

  • 김철희
    • 환경영향평가
    • /
    • 제11권2호
    • /
    • pp.109-116
    • /
    • 2002
  • The diagnostic and prognostic methods for generating 3 dimensional wind field were comparatively analyzed and 4 dimensional data assimilation (FDDA) technique by incorporating Automatic Weather System (AWS) into the prognostic methods was discussed for the urban scale air quality model. The A WS covered the urban scale grid distance of 10.6 km and 4.3 km in South Korea and Kyong-in region, respectively. This is representing that AWS for FDDA could be fairly well accommodated in prognostic model with the meso${\gamma}$~ microa scale (~5 km), indicating that the 3 dimensional wind field by FDDA technique could be a useful interpretative tool in urban area for the atmospheric environmental impact assessment.

Modelling of evaporation from free water surface

  • Song, Wei-Kang;Chen, Yibo
    • Geomechanics and Engineering
    • /
    • 제21권3호
    • /
    • pp.237-245
    • /
    • 2020
  • The process of evaporation from free water surface was simulated in a large scale environmental chamber under various controlled atmospheric conditions and also was modelled by a new mass transfer model. Six evaporation tests were conducted with increasing wind speed and air temperature in the environmental chamber, and hence the effect of atmosphere parameters on the evaporation process and the corresponding response of water were investigated. Furthermore, based on the experiment results, seven general types of mass transfer models were evaluated firstly, and then a new model consisted of wind speed function and air relative humidity function was proposed and validated. The results show that the free water evaporation is mainly affected by the atmospheric parameters and the evaporation rate increases with the increasing air temperature and wind speed. Both the air and soil temperatures are affected by the energy transformation during water evaporation. The new model can satisfactorily describe the evaporation process from free water surface under different atmospheric conditions.

기상-식생 모델을 이용한 연안 분지 도시 지역의 대기 중 CO2 시뮬레이션 (Simulation of Atmospheric CO2 Over Coastal Basin Urban Areas Using Meteorology-Vegetation Model)

  • 박창현;이화운
    • 한국환경과학회지
    • /
    • 제26권6호
    • /
    • pp.729-739
    • /
    • 2017
  • The Weather Research and Forecasting (WRF) model and Vegetation Photosynthesis and Respiration Model (VPRM) were coupled to simulate atmospheric $CO_2$ concentrations. The performance of the WRF-VPRM to simulate regional scale $CO_2$ concentration was estimated over coastal basin areas. Either Hestia 2011(HST) or Vulcan 2002(VUL) anthropogenic $CO_2$ emission data were used in two numerical experiments for the study regions. Simulated meteorological variables were validated with ground and background $CO_2$ measurement data, and the results show that the model captured temporal variations of $CO_2$ concentration on a daily basis. $CO_2$ directional analysis revealed that the dominant $CO_2$ emission sources are located S and SW. The simulated Net Ecosystem Exchange (NEE) agreed relatively well with measured $CO_2$ fluxes at each vegetation class site, showing approximately 40% at max improvement at shrub areas.

남한 지역에서 여름철 맑은 날의 대기 오염물 확산에 대한 수치적 연구 (A Numerical Study of Atmospheric Pollutant Dispersionon over South Korea on Sunny Summer Days)

  • 이태영;김승범
    • 한국환경과학회지
    • /
    • 제5권4호
    • /
    • pp.411-427
    • /
    • 1996
  • A Lagrangian dispersion model has been developed to study the transport of atmospheric pollutants over the southern Korean peninsula on sunny summer days. A mesoscale atmospheric model has been employed to provide the wind fields and information for turbulent diffusion for the calculation of trajectories using a conditioned particle technique. The model has been applied to the simulation of the transport of atmospheric pollutants emitted from five sources in the coastal locations under various synoptic scale winds. Under calm synoptic scale condition, the particles emitted during daytime are mixed vertically and transported toward inland by sea-breeze, according to the model simulation. The particles are then transported upward at she sea-breeze front or by the upward motion over the mountain, and some particles show tendency of returning toward the coast by the return flow of the sea-breeze circulation. The particles are found to remain over the peninsula throughout the integration period under calm synoptic scale condition. When there is westerly synoptic scale winds the particles emitted in the west coast can reach the east coast within a day of faster depending on the speed. With a synoptic scale southerly wind of 5 m/s, most of the particles from the fine sources are advected toward inland during daytime. During nighttime, significant portion of particles released in the west coast remains over the land, while most particles released in the east coast move toward the sea to the east of the middle peninsula.

  • PDF