• 제목/요약/키워드: Atmospheric grid

검색결과 162건 처리시간 0.025초

Application of Vertical Grid-nesting to the Tropical Cyclone Track and Intensity Forecast

  • Kim, Hyeon-Ju;Cheong, Hyeong-Bin;Lee, Chung-Hui
    • 한국지구과학회지
    • /
    • 제40권4호
    • /
    • pp.382-391
    • /
    • 2019
  • The impact of vertical grid-nesting on the tropical cyclone intensity and track forecast was investigated using the Weather Research and Forecast (WRF) version 3.8 and the initialization method of the Structure Adjustable Balanced Bogus Vortex (SABV). For a better resolution in the central part of the numerical domain, where the tropical cyclone of interest is located, a horizontal and vertical nesting technique was employed. Simulations of the tropical cyclone Sanba (16th in 2012) indicated that the vertical nesting had a weak impact on the cyclone intensity and little impact on the track forecast. Further experiments revealed that the performance of forecast was quite sensitive to the horizontal resolution, which is in agreement with previous studies. The improvement is due to the fact that horizontal resolution can improve forecasts not only on the tropical cyclone-scale but also for large-scale disturbances.

Numerical Simulation of Wind Pressures on a High-rise Building by Auto-mesh System

  • Tang, Yuanzhe;Cao, Shuyang
    • 국제초고층학회논문집
    • /
    • 제8권4호
    • /
    • pp.255-264
    • /
    • 2019
  • This paper describes large eddy simulation of wind pressures on a square cylinder in a uniform flow and a high-rise building immersed in an atmospheric turbulent boundary layer. For the atmospheric boundary layer case, the inflow turbulence is generated by a numerical wind tunnel. In the numerical simulation, particular attention is devoted to the performance of an auto hexahedral non-structural mesh. Both simulations are performed for three grid systems: an auto hexahedral non-structured grid, a structured Cartesian grid and a non-structured triangular prism grid, and for three grid numbers. The present study shows that the auto hexahedral unstructured mesh achieves the best simulation results for wind pressures on the square cylinder and the high-rise building. When the grid number is sufficiently large, the differences among the results obtained from the three investigated grid systems are not significant. However, the advantage of the auto hexahedral unstructured mesh becomes clear when the grid number decreases, because it enables a balanced distribution of orthogonal grids. The results described in this paper demonstrate that the auto hexahedral non-structured mesh has good potential applicability to simulation of urban flows.

지형자료 해상도에 따른 대기 유동장 변화에 관한 수치 연구 (Numerical Study on Atmospheric Flow Variation Associated With the Resolution of Topography)

  • 이순환;김선희;류찬수
    • 한국환경과학회지
    • /
    • 제15권12호
    • /
    • pp.1141-1154
    • /
    • 2006
  • Orographic effect is one of the important factors to induce Local circulations and to make atmospheric turbulence, so it is necessary to use the exact topographic data for prediction of local circulations. In order to clarify the sensitivity of the spatial resolution of topography data, numerical simulations using several topography data with different spatial resolution are carried out under stable and unstable synoptic conditions. The results are as follows: 1) Influence of topographic data resolution on local circulation tends to be stronger at simulation with fine grid than that with coarse grid. 2) The hight of mountains in numerical model become mote reasonable with high resolution topographic data, so the orographic effect is also emphasized and clarified when the topographic data resolution is higher. 2) The higher the topographic resolution is, the stronger the mountain effect is. When used topographic data resolution become fine, topography in numerical model becomes closer to real topography. 3) The topographic effect tends to be stronger when atmospheric stability is strong stable. 4) Although spatial resolution of topographic data is not fundamental factor for dramatic improvement of weather prediction accuracy, some influence on small scale circulation can be recognized, especially in fluid dynamic simulation.

지표면 변화와 인공열이 바람장에 미치는 영향에 관한 수치 시뮬레이션 (Numerical Simulation of Effect of Urban Land-use Type and Anthropogenic Heat on Wind Field)

  • 홍정혜;김유근
    • 한국대기환경학회지
    • /
    • 제16권5호
    • /
    • pp.511-520
    • /
    • 2000
  • The urban atmosphere is characterized by th difference in surface and atmospheric environment between urban and more natural area. To investigate th climatic effect of land use type and anthropogenic heat of urban on wind field, numerical simulations were carried out under typical summer synoptic condition. The wind model PNU_MCM(Pusan National University Mesoscale Circulation Model) is based on the three-dimensional Boussinesq equations, taking into account the hydrostatic assumption . Since lane-use differs over every subdivision on Pusan the surface energy budget model includes sub0grid parameterization scheme which can calculate the total heat flux over a grid surface composed of different surfaces. The simulated surface wind agrees well with the observed value, and average over 6 days which represent typical summer lan-sea breeze days, August 1998, i.e. negligible gradient winds and almost clear skies. Urbanization makes sea-breeze enhance at day and reduce land-breeze at night. The results show that contribution of land-use type is much larger than that of anthropogenic heat in Pusan.

  • PDF

Numerical Simulations of Dry and Wet Deposition over Simplified Terrains

  • Michioka, T.;Takimoto, H.;Ono, H.;Sato, A.
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권4호
    • /
    • pp.270-282
    • /
    • 2017
  • To evaluate the deposition amount on a ground surface, mesoscale numerical models coupled with atmospheric chemistry are widely used for larger horizontal domains ranging from a few to several hundreds of kilometers; however, these models are rarely applied to high-resolution simulations. In this study, the performance of a dry and wet deposition model is investigated to estimate the amount of deposition via computational fluid dynamics (CFD) models with high grid resolution. Reynolds-averaged Navier-Stokes (RANS) simulations are implemented for a cone and a two-dimensional ridge to estimate the dry deposition rate, and a constant deposition velocity is used to obtain the dry deposition flux. The results show that the dry deposition rate of RANS generally corresponds to that observed in wind-tunnel experiments. For the wet deposition model, the transport equation of a new scalar concentration scavenged by rain droplets is developed and used instead of the scalar concentration scavenged by raindrops falling to the ground surface just below the scavenging point, which is normally used in mesoscale numerical models. A sensitivity analysis of the proposed wet deposition procedure is implemented. The result indicates the applicability of RANS for high-resolution grids considering the effect of terrains on the wet deposition.

초기 입력 자료의 개선에 의한 RAMS 기상장의 예측 I - NOAA SST자료의 적용 - (A RAMS Atmospheric Field I Predicted by an Improved Initial Input Dataset - An Application of NOAA SST data -)

  • 원경미;정기호;이화운;정우식;이강열
    • 한국환경과학회지
    • /
    • 제18권5호
    • /
    • pp.489-499
    • /
    • 2009
  • In an effort to examine the Regional Atmospheric Modeling System (RAMS ver. 4.3) to the initial meteorological input data, detailed observational data of NOAA satellite SST (Sea Surface Temperature) was employed. The NOAA satellite SST which is currently provided daily as a seven-day mean value with resolution of 0.1 $^{\circ}$ grid spacing was used instead of the climatologically derived monthly mean SST using in RAMS. In addition, the RAMS SST data must be changed new one because it was constructed in 1993. For more realistic initial meteorological fields, the NOAA satellite SST was incorporated into the RAMS-preprocess package named ISentropic Analysis package (ISAN). When the NOAA SST data was imposed to the initial condition of prognostic RAMS model, the resultant performance of near surface atmospheric fields was discussed and compared with that of default option of SST. We got the good results that the new SST data was made in a standard RAMS format and showed the detailed variation of SST. As the modeling grid became smaller, the SST differences of the NOAA SST run and the RAMS SST43 (default) run in diurnal variation were very minor but this research can apply to further study for the realistic SST situation and the development in predicting regional atmospheric field which imply the regional circulation due to differential surface heating between sea and land or climatological phenomenon.

정지기상위성자료를 이용한 중규모 바람장 산출 알고리즘 최적화 (Optimization of Mesoscale Atmospheric Motion Vector Algorithm Using Geostationary Meteorological Satellite Data)

  • 김소명;박정현;오미림;조희제;손은하
    • 대기
    • /
    • 제22권1호
    • /
    • pp.1-12
    • /
    • 2012
  • The Atmospheric motion vectors (AMVs) derived using infrared (IR) channel imagery of geostationary satellites have been utilized widely for real-time weather analysis and data assimilation into global numerical prediction model. As the horizontal resolution of sensors on-board satellites gets higher, it becomes possible to identify atmospheric motions induced by convective clouds ($meso-{\beta}$ and $meso-{\gamma}$ scales). The National Institute of Meteorological Research (NIMR) developed the high resolution visible (HRV) AMV algorithm to detect mesoscale atmospheric motions including ageostrophic flows. To retrieve atmospheric motions smaller than $meso-{\beta}$ scale effectively, the target size is reduced and the visible channel imagery of geostationary satellite with 1 km resolution is used. For the accurate AMVs, optimal conditions are decided by investigating sensitivity of algorithm to target selection and correction method of height assignment. The results show that the optimal conditions are target size of 32 km ${\times}$ 32 km, the grid interval as same as target size, and the optimal target selection method. The HRV AMVs derived with these conditions depict more effectively tropical cyclone OMAIS than IR AMVs and the mean speed of HRV AMVs in OMAIS is slightly faster than that of IR AMVs. Optimized mesoscale AMVs are derived for 6 months (Feb. 2010-Jun. 2010) and validated with radiosonde observations, which indicates NIMR's HRV AMV algorithm can retrieve successfully mesoscale atmospheric motions.

고해상도 위성영상과 수치고도모형에 근거한 광릉 산림 관측지의 공간적 특성 (Spatial Characteristics of Gwangneung Forest Site Based on High Resolution Satellite Images and DEM)

  • 문상기;박승환;홍진규;김준
    • 한국농림기상학회지
    • /
    • 제7권1호
    • /
    • pp.115-123
    • /
    • 2005
  • 농림생태계에서의 물과 탄소의 순환을 연구하려면, 먼저 관측지의 공간적 특성을 정량적으로 이해해야 한다 특히, 우리나라와 같은 복잡한 경관에 관측지가 위치한 경우에는 공간 특성의 이해가 더욱 더 중요하다. 본 연구에서는 광릉 산림 소유역의 지형, 식생 및 토양과 관련된 변수들의 공간적 특성을 정량화하였다 지형의 공간 특성을 산출하기 위해 수치고도 모형 (DEM)에서 계산된 고도, 경사 및 사면 정보를 분석하였다. 식생과 토양 정보는 LANDSAT TM 영상으로부터 제작된 지표 피복 지도를 사용하였다. 계절 특성을 살펴보기 위해 1999년 6월 30일, 2000년 9월 4일, 2001년 9월 23일, 2002년 2월 14일의 네 위성 영상을 사용하였다. CO₂와 수증기의 플럭스 지수로서, 위성 영상으로부터 식생지수 NDVI를 세 격자 크기 (7km x 7km MODIS 격자, 3km x 3km 집중관측 격자, 1km x 1km 단위 격자)에 대해 각각 도출하였다. 반분산 분석에 근거해서 이 자료들을 사용하여 관측지의 비균질성의 공간 규모를 계산하였다. 예상한대로, 격자의 크기가 작아질수록 비균질성의 규모가 작아졌고, 식생의 계절 변화에 민감하였다. 40m 플럭스 타워가 위치한 두 단위 격자의 경우, 비균질성의 공간 규모는 200~1000m 이었고, 이러한 공간 규모는 모형에서 계산된 타워 플럭스 발자국의 기후도와 잘 일치하였다.

Refined numerical simulation in wind resource assessment

  • Cheng, Xue-Ling;Li, Jun;Hu, Fei;Xu, Jingjing;Zhu, Rong
    • Wind and Structures
    • /
    • 제20권1호
    • /
    • pp.59-74
    • /
    • 2015
  • A coupled model system for Wind Resource Assessment (WRA) was studied. Using a mesoscale meteorological model, the Weather Research and Forecasting (WRF) model, global-scale data were downscaled to the inner nested grid scale (typically a few kilometers), and then through the coupling Computational Fluid Dynamics (CFD) mode, FLUENT. High-resolution results (50 m in the horizontal direction; 10 m in the vertical direction below 150 m) of the wind speed distribution data and ultimately refined wind farm information, were obtained. The refined WRF/FLUENT system was then applied to assess the wind resource over complex terrain in the northern Poyang Lake region. The results showed that the approach is viable for the assessment of wind energy.

풍력 발전 예보 정확도 향상을 위한 국지 기상장 수치모의 개선 방안 연구 (A Study on Effect of Improvement Plan for Wind Energy Forecasting)

  • 정지아;이화운;전원배;김동혁;김현구;강용혁
    • 한국대기환경학회지
    • /
    • 제31권1호
    • /
    • pp.1-14
    • /
    • 2015
  • This study investigates the impact of enhanced regional meteorological fields on improvement of wind energy forecasting accuracy in the southwestern coast of the Korean Peninsula. To clarify the effect of detailed surface boundary data and application of analysis nudging technique on simulated meteorological fields, several WRF simulations were carried out. Case_LT, which is a simulation with high resolution terrain height and land use data, shows the most remarkable accuracy improvement along the shoreline mainly due to modified surface characteristics such as albedo, roughness length and thermal inertia. Case_RS with high resolution SST data shows accurate SST distributions compared to observation data, and they led to change in land and sea breeze circulation. Case_GN, grid nudging applied simulation, also shows changed temperature and wind fields. Especially, the application of grid nudging dominantly influences on the change of horizontal wind components in comparison with vertical wind component.