• Title/Summary/Keyword: Atmospheric gas

Search Result 1,309, Processing Time 0.042 seconds

Relationship between ICAC EP-7 and %RMS, Standards for Gas Flow Uniformity inside Electrostatic Precipitators (전기집진기 내부 유동 균일도 평가 기준인 ICAC EP-7과 %RMS 간 상관관계)

  • Shin, Wan-Ho;Hong, Won-Seok;Song, Dong-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.234-240
    • /
    • 2010
  • Gas flow uniformity is an important factor to guarantee particle removal performance of electrostatic precipitators (EP), and the gas flow uniformity is evaluated by a fraction of standard deviation to the mean of gas flow distribution (%RMS) or a technical standard, ICAC EP-7, provided by The Institute of Clean Air Companies. In this study, relationship between the ICAC EP-7 and %RMS in evaluation of gas flow uniformity was investigated in terms of flow velocity. The maximum values of %RMS for gas velocity distribution of normal distribution has been obtained, and the maximum values of %RMS with gas velocity distribution satisfying ICAC EP-7 standards were also evaluated. With gas flow distribution obtained from CFD analysis and physical model test of real EP, %RMS values were calculated and it was tested if those gas flow distribution satisfy the criteria specified in ICAC EP-7. The %RMS values satisfying criteria of ICAC have been appeared to have similar values with %RMS values calculated with normal distribution of gas velocities.

Gas/Particle Level and Dry Deposition Flux of Atmospheric PCBs

  • Yeo, Hyun-Gu;Park, Ki-Chul
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.4
    • /
    • pp.10-16
    • /
    • 2003
  • Atmospheric samples were conducted from September 2001 to July 2002 with GPS-l PUF sampler in rural site to concentration distributions of gas/particle PCBs and to calculate dry deposition flux of PCBs. $\Sigma$PCBs concentrations of gas/particle PCBs were 59.29$\pm$48.83, 6.56$\pm$6.59 pg/㎥, respectively. Gas contribution (%) of total PCBs (gas + particle) was 90% which existed gas phase in the atmosphere. The particle contribution (%) of PCB congeners increased relatively more of the less volatile congeners with the highest chlorine number. The correlation coefficients (r) between total PCBs and temperature ($^{\circ}C$) showed negative correlation in - 0.62 (p<0.0l) for particle phase, positive correlation in 0.63 (p<0.01) for gas phase. In other word, particle phase PCBs is enriched in colder weather which could be due to greater in corporation of condensed gas phase at low temperature. The calculated dry deposition of total PCBs (gas + particle) was 0.008, 0.008 $\mu\textrm{g}$ $m^{-2}$ da $y^{-l}$ which showed maximum dry deposition flux in December, minimum data in July Bs in the atmosphere. The calculated dry deposition fluxes of total PCBs were influenced by particle phase PCBs even though PCBs in the atmosphere were present primarily in the gas phase.e.

A Study on Thermodynamic Properties of Ethylene Gas Hydrate

  • Lim, Gye-Gyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.E1
    • /
    • pp.10-15
    • /
    • 2007
  • The gas hydrates are probably most sensitive to climate change since they are stable only under specific conditions of high pressure and low temperature. One of the main factors responsible for formation of gas hydrates is the saturation of the gases with water vapor. Quantitative phase equilibrium data and understanding of the roles of water component in the phase behavior of the heterogeneous water-hydrocarbon-hydrate mixture are of importance and of engineering value. In this study, the water content of ethylene gas in equilibrium with hydrate and water phases were analyzed by theoretical and experimental methods at temperatures between 274.15 up to 291.75 K and pressures between 593.99 to 8,443.18 kPa. The experimental and theoretical enhancement factors (EF) for the water content of ethylene gas and the fugacity coefficients of water and ethylene in gas phase were determined and compared with each other over the entire range of pressure carried out in this experiment. In order to get the theoretical enhancement factors, the modified Redlich-Kwong equation of state was used. The Peng-Robinson equations and modified Redlich-Kwong equations of state were used to get the fugacity coefficients for ethylene and water in the gas phase. The results predicted by both equations agree very well with the experimental values for the fugacity coefficients of the compressed ethylene gas containing small amount of water, whereas, those of water vapor do not in the ethylene rich gas at high temperature for hydrate formation locus.

Optimal Design of Atmospheric Plasma Torch with Various Swirl Strengths (스월 강도에 의한 상압 플라즈마 토치의 최적 설계)

  • Moon, J.H.;Kim, Youn-J.;Han, J.G.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1736-1741
    • /
    • 2003
  • The characteristics plasma flow of an atmospheric plasma torch used for thermal plasma processing is studied. In general, it is produced by the arc-gas interactions between a cathode tip and an anode nozzle. The performance of non-transferred plasma torch is significantly dependent on jet flow characteristics out of the nozzle. In this work, the distribution of gas flow that goes out to the atmosphere through a plenum chamber and nozzle is analyzed to evaluate the performance of atmospheric plasma torch. Numerical analysis is carried out with various angles of an inlet flow which can create different swirl flow fields. Moreover, the size of plasma plume is experimentally depicted.

  • PDF

Hydrogen photoproduction by the synchronously grown marine unicellular cyanobacterium Synechococcus sp. Miami BG 043511 under extremely high oxygen concentration

  • Yih, Won-Ho;Takeyama, Haruko;Mitsui, Akira
    • Journal of the korean society of oceanography
    • /
    • v.31 no.1
    • /
    • pp.18-22
    • /
    • 1996
  • The effect of exogenous oxygen on hydrogen photoproduction was examined in the synchronously grown cells of marine Synechococcus sp. Miami BG 043511 under conditions of high cell density (0.6-0.8 mg chl-${\alpha}$ $ml^{-1}$) and high light intensity (1000 ${\mu}$E $m^{-2}$ $s^{-1}$). Hydrogen evolution after 20-h incubation did not decline under the initial oxygen concentrations up to 20%, but declined by half under 34% oxygen. 50% and 100% oxygen gas phase did not completely inhibit the hydrogen photoproduction during 40-h incubations. After 2-day pretreatment under 100% exogenous oxygen the hydrogen photoproduction capabilities were not irreversibly inhibited, which was demonstrated in the subsequent 9-day incubation under initial 0, 50 and even under 100% oxygen gas phase. This strain could be useful for developing a hydrogen photoproduction system under atmospheric oxygen concentration.

  • PDF

Two-dimension Numerical Simulation of Stack Flue Gas Dispersion

  • Park, Young-Koo;Wu, Shi-Chang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.33-39
    • /
    • 2012
  • A numerical simulation of plume from a stack into atmospheric cross flow is investigated using a two-dimension model. The simulation is based on the ${\kappa}{\sim}{\varepsilon}$ turbulence model and a finite volume method. In this paper, it mostly researches how the wind velocity affects the flue gas diffusion from an 80 m high stack. Wind velocity is one of the most important factors for flue gas diffusion. The plume shape size, the injection height, the NO pollutant distribution and the concentration at the near ground are presented with two kinds of wind velocities, 1 m/s and 5 m/s. It is found that large wind velocity is better for flue gas diffusion, it generates less downwash. Although the rise height is lower, the pollutant dilutes faster and more sufficient.

A Study on the Reduction of $NO_x$ Emission from Dual Fuel Engine for Co-generation System (열병합발적용 Dual Fuel Engine의 질소산화물 배출저감에 관한 연구)

  • 정일래;김용술;심용식
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.31-40
    • /
    • 1991
  • This study shows the correlation between $NO_x$ emission in the exhaust gas and various operation factors of dual fuel engine for Co-generation system. General tendency was shown that the thermal efficiency was lowered by the change of operation factors. However these were not confirmed on this experiment. Increasing T4 temperature (exhaust gas temperature at turbo-charger inlet) reduces $NO_x$ emission rate. The higher T4 temperature requires lower excess air as the excess air ratio is controlled by T4 temperature on gas mode operation. Another tendency was that $NO_x$ emission rate is reduced in case of increasing boost air temperature, quantity of pilot oil or bypassing flue gas through the exhaust gas boiler. The diameter of the fuel injection nozzle was changed smaller than design value and the injection timing was readjusted. Thus $NO_x$ emission rate could be reduced as retarding injection timing and changing hole diameter of fuel injection nozzle, however maxium engine out-put was decreased by changing fuel nozzle on the diesel mode operation.

  • PDF