• Title/Summary/Keyword: Atmospheric conditions

Search Result 1,393, Processing Time 0.026 seconds

Optimization of Mesoscale Atmospheric Motion Vector Algorithm Using Geostationary Meteorological Satellite Data (정지기상위성자료를 이용한 중규모 바람장 산출 알고리즘 최적화)

  • Kim, Somyoung;Park, Jeong-Hyun;Ou, Mi-Lim;Cho, Heeje;Sohn, Eun-Ha
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The Atmospheric motion vectors (AMVs) derived using infrared (IR) channel imagery of geostationary satellites have been utilized widely for real-time weather analysis and data assimilation into global numerical prediction model. As the horizontal resolution of sensors on-board satellites gets higher, it becomes possible to identify atmospheric motions induced by convective clouds ($meso-{\beta}$ and $meso-{\gamma}$ scales). The National Institute of Meteorological Research (NIMR) developed the high resolution visible (HRV) AMV algorithm to detect mesoscale atmospheric motions including ageostrophic flows. To retrieve atmospheric motions smaller than $meso-{\beta}$ scale effectively, the target size is reduced and the visible channel imagery of geostationary satellite with 1 km resolution is used. For the accurate AMVs, optimal conditions are decided by investigating sensitivity of algorithm to target selection and correction method of height assignment. The results show that the optimal conditions are target size of 32 km ${\times}$ 32 km, the grid interval as same as target size, and the optimal target selection method. The HRV AMVs derived with these conditions depict more effectively tropical cyclone OMAIS than IR AMVs and the mean speed of HRV AMVs in OMAIS is slightly faster than that of IR AMVs. Optimized mesoscale AMVs are derived for 6 months (Feb. 2010-Jun. 2010) and validated with radiosonde observations, which indicates NIMR's HRV AMV algorithm can retrieve successfully mesoscale atmospheric motions.

Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-ω model

  • Yang, Yi;Xie, Zhuangning;Gu, Ming
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.465-480
    • /
    • 2017
  • Modelling an equilibrium atmospheric boundary layer (ABL) in computational wind engineering (CWE) and relevant areas requires the boundary conditions, the turbulence model and associated constants to be consistent with each other. Among them, the inflow boundary conditions play an important role and determine whether the equations of the turbulence model are satisfied in the whole domain. In this paper, the idea of modeling an equilibrium ABL through specifying proper inflow boundary conditions is extended to the SST $k-{\omega}$ model, which is regarded as a better RANS model for simulating the blunt body flow than the standard $k-{\varepsilon}$ model. Two new sets of inflow boundary conditions corresponding to different descriptions of the inflow velocity profiles, the logarithmic law and the power law respectively, are then theoretically proposed and numerically verified. A method of determining the undetermined constants and a set of parameter system are then given, which are suitable for the standard wind terrains defined in the wind load code. Finally, the full inflow boundary condition equations considering the scale effect are presented for the purpose of general use.

A Study on Atmospheric Correction in Satellite Imagery Using an Atmospheric Radiation Model (대기복사모형을 이용한 위성영상의 대기보정에 관한 연구)

  • Oh, Sung-Nam
    • Atmosphere
    • /
    • v.14 no.2
    • /
    • pp.11-22
    • /
    • 2004
  • A technique on atmospheric correction algorithm to the multi-band reflectance of Landsat TM imagery has been developed using an atmospheric radiation transfer model for eliminating the atmospheric and surface diffusion effects. Despite the fact that the technique of satellite image processing has been continually developed, there is still a difference between the radiance value registered by satellite borne detector and the true value registered at the ground surface. Such difference is caused by atmospheric attenuations of radiance energy transfer process which is mostly associated with the presence of aerosol particles in atmospheric suspension and surface irradiance characteristics. The atmospheric reflectance depend on atmospheric optical depth and aerosol concentration, and closely related to geographical and environmental surface characteristics. Therefore, when the effects of surface diffuse and aerosol reflectance are eliminated from the satellite image, it is actually corrected from atmospheric optical conditions. The objective of this study is to develop an algorithm for making atmospheric correction in satellite image. The study is processed with the correction function which is developed for eliminating the effects of atmospheric path scattering and surface adjacent pixel spectral reflectance within an atmospheric radiation model. The diffused radiance of adjacent pixel in the image obtained from accounting the average reflectance in the $7{\times}7$ neighbourhood pixels and using the land cover classification. The atmospheric correction functions are provided by a radiation transfer model of LOWTRAN 7 based on the actual atmospheric soundings over the Korean atmospheric complexity. The model produce the upward radiances of satellite spectral image for a given surface reflectance and aerosol optical thickness.

Synoptic Meteorological Classification of the Days on Which Asthma Deaths Occurred Due to High PM10 Concentrations in Seoul (서울지역 미세먼지 고농도에 따른 천식사망자 사례일의 종관기상학적 분류)

  • Choi, Yun-Jeong;Park, Jong-Kil;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.26 no.2
    • /
    • pp.159-172
    • /
    • 2017
  • Asthma deaths in Seoul peaked on the third, fifth, and second days after the PM concentration exceeded the daily average concentration standard. We classified the synoptic meteorological conditions, based on the days involving such cases, into three categories. Type 1 included the meteorological condition likely to cause high air pollution concentrations in the leeward region, the dominant wind direction of which is the northwest. Type 2 included the meteorological condition likely to cause high air pollution concentrations due to the weak wind velocity under stable atmospheric conditions. Type 3 was when the passage low atmospheric pressure and the expansion of high atmospheric pressure occurred at the rear, indicating a meteorological condition likely to cause high air pollution, in certain regions. Type 1 occurred 11 times, with high concentrations of over $100{\mu}g/m^3$ being observed in the southeastern part of Seoul. Type 2 occurred 24 times, often accompanied by a PM concentration of $100{\sim}400{\mu}g/m^3$. Type 3 occurred 11 times, and was accompanied by several days of yellow dust that accounted for the highest concentrations.

TEMPORAL VARIATIONS OF URBAN HEAT ISLAND USING LAND SURFACE TEMPERATURE DERIVED FROM MTSAT-1R

  • Hong, Ki-Ok;Suh, Myoung-Seok;Kang, Jeon-Ho;Kwak, Chong-Heum;Kim, Chan-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.290-293
    • /
    • 2007
  • The land surface temperature (LST) derived from the meteorological satellite can be used to investigate the urban heat island (UHI) and its temporal variations. In this study, we developed LST retrieval algorithm from MTSAT-1R by means of a statistical regression analysis from radiative transfer simulations using MODTRAN 4 for a wide range of atmospheric, satellite viewing angle (SVA) and lapse rate conditions. 535 sets of thermodynamic initial guess retrieval (TIGR) were used for the radiative transfer simulations. Sensitivity and intercomparison results showed that the algorithm, developed in this study, estimated the LST with a similar bias and root mean square errors to that of other algorithms. The magnitude, spatial extent, and seasonal and diurnal variations of the UBI of Korean peninsula were well demonstrated by the LST derived from MTSAT-1R data. In general, the temporal variations of UHI clearly depend on the weather conditions and geographic environment of urban.

  • PDF

Comparison on Safety Features among HTGR's Reactor Cavity Cooling Systems (RCCSs)

  • Kuniyoshi Takamatsu;Shumpei Funatani
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.832-845
    • /
    • 2024
  • Reactor cavity cooling systems (RCCSs) comprising passive safety features use the atmosphere as a coolant, which cannot be lost. However, their drawback is that they are easily affected by atmospheric disturbances. To realize the commercial application of the two types of passive RCCSs, namely RCCSs based on atmospheric radiation and atmospheric natural circulation, their safety must be evaluated, that is, they must be able to remove heat from the reactor pressure vessel (RPV) surface at all times and under any condition other than under normal operating conditions. These include both expected and unexpected natural phenomena and accidents. Moreover, they must be able to eliminate the heat leakage emitted from the RPV surface during normal operation. However, utilizing all of the heat emitted from the RPV surface increases the degree of waste heat utilization. This study aims to understand the characteristics and degree of passive safety features for heat removal by comparing RCCSs based on atmospheric radiation and atmospheric natural circulation under the same conditions. It was concluded that the proposed RCCS based on atmospheric radiation has an advantage in that the temperature of the RPV could be stably maintained against disturbances in the ambient air.

Analysis and Simulation of SF6 Tracer Experiments for Tracking the Pollutant Transport (오염물질 이동 추적을 위한 SF6 추적자 실험 분석과 모사 연구)

  • 김영성;조성호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.5
    • /
    • pp.397-410
    • /
    • 1998
  • Tracer experiments were performed 4 times in December 1992 on the relatively flat terrain and nearby building area adjacent to the Taedok Science Town in Korea. Each experiment was continued for relatively short period of 1 or 2 hours with intermittent release of SF6 up to 2.07g/s at 10m height. Movement of tracer plume was tracked by a continuous tracer analyzer installed on an air monitoring van. Simulation with INPUFF was carried out to analyze and predict experiments. Measured profiles of tracer plume were narrow and sharp while predicted profiles by INPUFF were broad and slowly varied. Tracer plumes were detected at a short distance of 0.5 to 2.2 km mainly due to intermittent release and high value of lower detectable limit. Various experimental conditions were tested by INPUFF simulation in order to find desirable conditions. Higher wind speed and less variable wind direction could yield longer distance of plume tracking only when the lower detectable limit was sufficiently low. Distance of plume tracking was long and did not much depend on the lower detectable limit in stable atmospheric conditions.

  • PDF

A New MPPT Algorithm based on P&O Algorithm (P&O 알고리즘을 개선한 새로운 MPPT 알고리즘)

  • Jung Y.S.;Yu G.J.;So J.H.;Choi J.Y.;Choi J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.925-928
    • /
    • 2003
  • As the maximum power operating point(MPOP) of photovoltaic(PV) power generation systems changes with changing atmospheric conditions such as solar radiation and temperature, an important consideration in the design of efficient PV system is to track the MPOP correctly. Many maximum power point tracking(MPPT) techniques have been considered in the past, however, techniques using microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different PV arrays. Although the efficiency of these MPPT algorithms is usually high, it drops noticeably in case of rapidly changing atmospheric conditions. This paper proposed a new MPPT algorithm based on perturb & observe(P&O) algorithm with experiment. The results shows that the new P&O algorithm has successfully tracked the MPOP, even in case of rapidly changing atmospheric conditions, and has higher efficiency than ordinary algorithms.

  • PDF

Comparative Study of Maximum Power Point Tracking Algorithms Using PV Array Simulator (태양전지 모의 전원을 이용한 MPPT 알고리즘의 비교 고찰)

  • Jung Youngseok;So Junghun;Yu Gwonjong;Choi Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.234-237
    • /
    • 2003
  • As the maximum power operating point (MPOP) of photovoltaic (PV) power systems changes with changing atmospheric conditions, the efficiency of maximum power point tracking (MPPT) is important in PV power systems. Many MPPT techniques have been considered in the past, but techniques using microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different PV arrays. Although the efficiency of these MPPT algorithms is usually high, it drops noticeably in case of rapidly changing atmospheric conditions. In this paper, we proposed a new MPPT control method called improved perturb and observe method (ImP&O), anda simple voltage and current characteristic equation of a PV array for PV array simulator. Experimental results verify the accuracy and excellent performance of the proposed MPPT method. ImP&O algorithm is very simple, and has successful tracked the MPOP, even in case of rapidly changing atmospheric conditions.

  • PDF

A Study of MPPT Algorithm for PV PCS (태양광발전용 PCS의 MPPT 제어알고리즘 고찰)

  • Jung, Young-Seok;Yu, Gwon-Jong;So, Jeong-Hun;Choi, Ju-Yeop;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1359-1361
    • /
    • 2003
  • As the maximum power operating point(MPOP) of Photovoltaic(PV) power generation systems changes with changing atmospheric conditions such as solar radiation and temperature, an important consideration. In the design of efficient PV system is to track the MPOP correctly. Many maximum power point tracking(MPPT) techniques have been considered in the past, however, techniques using microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different PV arrays. Although the efficiency of these MPPT algorithms is usually high, it drops noticeably in case of rapidly changing atmospheric conditions. This pager proposed a new MPPT algorithm based on perturb & observe(P&O) algorithm with experiment. The results shows that the new P&O algorithm has successfully tracked the MPOP, even in case of rapidly changing atmospheric conditions, and has higher efficiency than ordinary algorithms.

  • PDF