• Title/Summary/Keyword: Atmospheric channel

Search Result 172, Processing Time 0.025 seconds

An estimation of surface reflectance for Advanced Himawari Imager (AHI) data using 6SV

  • Seong, Noh-hun;Lee, Chang Suk;Choi, Sungwon;Seo, Minji;Lee, Kyeong-Sang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.67-71
    • /
    • 2016
  • The surface reflectance is essential to retrieval various indicators related land properties such as vegetation index, albedo and etc. In this study, we estimated surface reflectance using Himawari-8 / Advanced Himawari Imager (AHI) channel data. In order to estimate surface reflectance from Top of Atmosphere (TOA) reflectance, the atmospheric correction is necessary because all of the TOA reflectance from optical sensor is affected by gas molecules and aerosol in the atmosphere. We used Second Simulation of a Satellite Signal in the Solar Spectrum Vector (6SV) Radiative Transfer Model (RTM) to correct atmospheric effect, and Look-Up Table (LUT) to shorten the calculation time. We verified through comparison Himawri-8 / AHI surface reflectance and Proba-V S1 products. As a result, bias and Root Mean Square Error (RMSE) are calculated about -0.02 and 0.05.

Sensitivity Analysis for CAS500-4 Atmospheric Correction Using Simulated Images and Suggestion of the Use of Geostationary Satellite-based Atmospheric Parameters (모의영상을 이용한 농림위성 대기보정의 주요 파라미터 민감도 분석 및 타위성 산출물 활용 가능성 제시)

  • Kang, Yoojin;Cho, Dongjin;Han, Daehyeon;Im, Jungho;Lim, Joongbin;Oh, Kum-hui;Kwon, Eonhye
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1029-1042
    • /
    • 2021
  • As part of the next-generation Compact Advanced Satellite 500 (CAS500) project, CAS500-4 is scheduled to be launched in 2025 focusing on the remote sensing of agriculture and forestry. To obtain quantitative information on vegetation from satellite images, it is necessary to acquire surface reflectance through atmospheric correction. Thus, it is essential to develop an atmospheric correction method suitable for CAS500-4. Since the absorption and scattering characteristics in the atmosphere vary depending on the wavelength, it is needed to analyze the sensitivity of atmospheric correction parameters such as aerosol optical depth (AOD) and water vapor (WV) considering the wavelengths of CAS500-4. In addition, as CAS500-4 has only five channels (blue, green, red, red edge, and near-infrared), making it difficult to directly calculate key parameters for atmospheric correction, external parameter data should be used. Therefore, thisstudy performed a sensitivity analysis of the key parameters (AOD, WV, and O3) using the simulated images based on Sentinel-2 satellite data, which has similar wavelength specifications to CAS500-4, and examined the possibility of using the products of GEO-KOMPSAT-2A (GK2A) as atmospheric parameters. The sensitivity analysisshowed that AOD wasthe most important parameter with greater sensitivity in visible channels than in the near-infrared region. In particular, since AOD change of 20% causes about a 100% error rate in the blue channel surface reflectance in forests, a highly reliable AOD is needed to obtain accurate surface reflectance. The atmospherically corrected surface reflectance based on the GK2A AOD and WV was compared with the Sentinel-2 L2A reflectance data through the separability index of the known land cover pixels. The result showed that two corrected surface reflectance had similar Seperability index (SI) values, the atmospheric corrected surface reflectance based on the GK2A AOD showed higher SI than the Sentinel-2 L2A reflectance data in short-wavelength channels. Thus, it is judged that the parameters provided by GK2A can be fully utilized for atmospheric correction of the CAS500-4. The research findings will provide a basis for atmospheric correction of the CAS500-4 in the future.

Analysis of the Fog Detection Algorithm of DCD Method with SST and CALIPSO Data (SST와 CALIPSO 자료를 이용한 DCD 방법으로 정의된 안개화소 분석)

  • Shin, Daegeun;Park, Hyungmin;Kim, Jae Hwan
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.471-483
    • /
    • 2013
  • Nighttime sea fog detection from satellite is very hard due to limitation in using visible channels. Currently, most widely used method for the detection is the Dual Channel Difference (DCD) method based on Brightness Temperature Difference between 3.7 and 11 ${\mu}m$ channel (BTD). However, this method have difficulty in distinguishing between fog and low cloud, and sometimes misjudges middle/high cloud as well as clear scene as fog. Using CALIPSO Lidar Profile measurements, we have analyzed the intrinsic problems in detecting nighttime sea fog from various satellite remote sensing algorithms and suggested the direction for the improvement of the algorithm. From the comparison with CALIPSO measurements for May-July in 2011, the DCD method excessively overestimates foggy pixels (2542 pixels). Among them, only 524 pixel are real foggy pixels, but 331 pixels and 1687 pixels are clear and other type of clouds, respectively. The 514 of real foggy pixels accounts for 70% of 749 foggy pixels identified by CALIPSO. Our proposed new algorithm detects foggy pixels by comparing the difference between cloud top temperature and underneath sea surface temperature from assimilated data along with the DCD method. We have used two types of cloud top temperature, which obtained from 11 ${\mu}m$ brightness temperature (B_S1) and operational COMS algorithm (B_S2). The detected foggy 1794 pixels from B_S1 and 1490 pixel from B_S2 are significantly reduced the overestimation detected by the DCD method. However, 477 and 446 pixels have been found to be real foggy pixels, 329 and 264 pixels be clear, and 989 and 780 pixels be other type of clouds, detected by B_S1 and B_S2 respectively. The analysis of the operational COMS fog detection algorithm reveals that the cloud screening process was strictly enforced, which resulted in underestimation of foggy pixel. The 538 of total detected foggy pixels obtain only 187 of real foggy pixels, but 61 of clear pixels and 290 of other type clouds. Our analysis suggests that there is no winner for nighttime sea fog detection algorithms, but loser because real foggy pixels are less than 30% among the foggy pixels declared by all algorithms. This overwhelming evidence reveals that current nighttime sea fog algorithms have provided a lot of misjudged information, which are mostly originated from difficulty in distinguishing between clear and cloudy scene as well as fog and other type clouds. Therefore, in-depth researches are urgently required to reduce the enormous error in nighttime sea fog detection from satellite.

Comparison of Aerosol Optical Thicknesses by MODIS and MI in Northeast Asia (동북아시아 지역에서 MODIS와 MI에 의한 에어로졸 광학두께 비교)

  • Kim, Eun-kyu;Lee, Kyu-Tae;Jung, Myeong-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.607-615
    • /
    • 2017
  • The aerosol optical thickness data retrieved by Moderate Resolution Imaging Spectrometer (MODIS) of Terra & Aqua and Meteorological Imager (MI) of Communication Ocean and Meteorological Satellite (COMS) are analyzed and compared with the measurement data of Aerosol Robotic Network (AERONET) in Northeast Asia. As the result, the aerosol optical thickness retrieved by MODIS and MI were well agreed at ocean region but quite different at cloud edge and barren surface. The reason was that MODIS aerosol optical thickness was retrieved using the visible and infrared channels but MI was retrieved with the visible channel only. Consequentially, the thin cloud be misinterpreted as aerosol by MI and the difference between MODIS and MI aerosol optical thicknesses could be occurred with Normal Distribution Vegetation Index (NDVI) and land surface property. Therefore, the accuracies of clear/cloud region and surface reflectivity are required in order to improve the aerosol optical thickness algorithm by MI.

Hydrometeors and Atmospheric Thermal Structure Derived from the Infrared and Microwave Satellite Observations: Infrared Interferometer Spectrometer (IRIS) and Microwave Sounding Unit (MSU) (적외선과 마이크로파 위성관측에서 유도된 대기물현상 및 대기 열적 상태: 적외선 간섭분광계 (IRIS)와 Microwave Sounding Unit)

  • Yoo, Jung-Moon;Song, Hee-Young;Lee, Hyun-A;Koo, Gyo-Sook
    • Atmosphere
    • /
    • v.12 no.4
    • /
    • pp.69-90
    • /
    • 2002
  • The infrared and microwave satellite observations have been used to derive the information of hydrometeors (i.e., cloud and precipitation) and atmospheric temperature. The observations were made by the Nimbus-4 Infrared Interferometer Spectrometer (IRIS) in 1970, and by the Microwave Sounding Unit (MSU) during the period 1980-99, which had channel 1~4 (Chl~4). The IRIS, which has a field of view of ~100 km, has been utilized to examine the cirrus and marine stratus clouds. The cirrus and stratus distributions were obtained, respectively, based on the spectral difference in the infrared window region, and the absorption of water vapor and $CO_2$ in the spectral region $870-980cm^{-1}$. The MSU Ch1 data has been used for low tropospheric temperature and hydrometeors, while the Ch2, Ch3 and Ch4, respectively, for the thermal state of midtroposphere, tropopause, and lower stratosphere. The climatic aspects of El Ni$\tilde{n}$o, Quasi-Biennial Oscillation (QBO) and temperature trends over the globe are discussed with the MSU data. This study suggests that the IRIS and MSU data are useful for monitoring the hydrometeors and atmospheric thermal state in climate system.

Detection of Yellow Sand Dust over Northeast Asia using Background Brightness Temperature Difference of Infrared Channels from MODIS (MODIS 적외채널 배경 밝기온도차를 이용한 동북아시아 황사 탐지)

  • Park, Jusun;Kim, Jae Hwan;Hong, Sung Jae
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • The technique of Brightness Temperature Difference (BTD) between 11 and $12{\mu}m$ separates yellow sand dust from clouds according to the difference in absorptive characteristics between the channels. However, this method causes consistent false alarms in many cases, especially over the desert. In order to reduce these false alarms, we should eliminate the background noise originated from surface. We adopted the Background BTD (BBTD), which stands for surface characteristics on clear sky condition without any dust or cloud. We took an average of brightness temperatures of 11 and $12{\mu}m$ channels during the previous 15 days from a target date and then calculated BTD of averaged ones to obtain decontaminated pixels from dust. After defining the BBTD, we subtracted this index from BTD for the Yellow Sand Index (YSI). In the previous study, this method was already verified using the geostationary satellite, MTSAT. In this study, we applied this to the polar orbiting satellite, MODIS, to detect yellow sand dust over Northeast Asia. Products of yellow sand dust from OMI and MTSAT were used to verify MODIS YSI. The coefficient of determination between MODIS YSI and MTSAT YSI was 0.61, and MODIS YSI and OMI AI was also 0.61. As a result of comparing two products, significantly enhanced signals of dust aerosols were detected by removing the false alarms over the desert. Furthermore, the discontinuity between land and ocean on BTD was removed. This was even effective on the case of fall. This study illustrates that the proposed algorithm can provide the reliable distribution of dust aerosols over the desert even at night.

Satellite Image Analysis of Low-Level Stratiform Cloud Related with the Heavy Snowfall Events in the Yeongdong Region (영동 대설과 관련된 낮은 층운형 구름의 위성관측)

  • Kwon, Tae-Yong;Park, Jun-Young;Choi, Byoung-Cheol;Han, Sang-Ok
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.577-589
    • /
    • 2015
  • An unusual long-period and heavy snowfall occurred in the Yeongdong region from 6 to 14 February 2014. This event produced snowfall total of 194.8 cm and the recordbreaking 9-day snowfall duration in the 103-year local record at Gangneung. In this study, satellite-derived cloud-top brightness temperatures from the infrared channel in the atmospheric window ($10{\mu}m{\sim}11{\mu}m$) are examined to find out the characteristics of clouds related with this heavy snowfall event. The analysis results reveal that a majority of precipitation is related with the low-level stratiform clouds whose cloud-top brightness temperatures are distributed from -15 to $-20^{\circ}C$ and their standard deviations over the analysis domain (${\sim}1,000km^2$, 37 satellite pixels) are less than $2^{\circ}C$. It is also found that in the above temperature range precipitation intensity tends to increase with colder temperature. When the temperatures are warmer than $-15^{\circ}C$, there is no precipitation or light precipitation. Furthermore this relation is confirmed from the examination of some other heavy snowfall events and light precipitation events which are related with the low-level stratiform clouds. This precipitation-brightness temperature relation may be explained by the combined effect of ice crystal growth processes: the maximum in dendritic ice-crystal growth occurs at about $-15^{\circ}C$ and the activation of ice nuclei begins below temperatures from approximately -7 to $-16^{\circ}C$, depending on the composition of the ice nuclei.

a-C:H Films Deposited in the Plasma of Surface Spark Discharge at Atmospheric Pressure. Part I: Experimental Investigation

  • Chun, Hui-Gon;K.V. Oskomov;N.S. Sochungov;Lee, Jing-Hyuk;You, Yong-Zoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.357-363
    • /
    • 2003
  • The aim of this work is the synthesis of a-C:H films from methane gas using surface spark discharge at the atmospheric pressure. Properties of these films have been investigated as functions of energy W delivered per a methane molecule in the discharge. The method enables the coatings to be deposited with high growth rates (up to $100 \mu\textrm{m}$/hour) onto large-area substrates. It is shown that the films consist of spherical granules with diameter of 20∼50 nm formed in the spark channel and then deposited onto the substrate. The best film characteristics such as minimum hydrogen-to-carbon atoms ratio H/C=0.69, maximum hardness $H_{v}$ =3 ㎬, the most dense packing of the granules and highest scratch resistance has been obtained under the condition of highest energy W of 40 eV. The deposited a-C:H coatings were found to be more soft and hydrogenated compared to the diamond-like hydrogenated (a-C:H) films which obtained by traditional plasmaenhanced chemical vapor deposition methods at low pressure (<10 Torr). Nevertheless, these coatings can be potentially used for scratch protection of soft plastic materials since they are of an order harder than plastics but still transparent (the absorption coefficient is about $10^4$$10^{5}$ $m^{-1}$ At the same time the proposed method for fast deposition of a-C:H films makes this process less expensive compared to the conventional techniques. This advantage can widen the application field of. these films substantially.y.

CALIBRATION ISSUES OF SPACEBORNE MICROWAVE RADIOMETER DREAM ON STSAT-2

  • Singh, Manoj Kumar;Kim, Sung-Hyun;Chae, Chun-Sik;Lee, Ho-Jin;Park, Jong-Oh;Sim, Eun-Sup;Zhang, De-Hai;Jiang, Jing-Shan;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.398-401
    • /
    • 2006
  • Dual channel Radiometer for Earth and Atmospheric Monitoring (DREAM) is the main payload on Science and Technology SATellite-2 (STSAT-2) of Korea. DREAM is two-channel microwave radiometer with linear polarization, and operating at center frequencies of 23.8 GHz and 37 GHz. An equation for DREAM calibration is derived which accounts for losses and re-radiation in the microwave components of the radiometer due to physical temperature. This paper describes the radiometric calibration equation to get antenna temperature ($T_A$) from the measured output data. At lower altitude, the measured deep space temperature is contaminated by middle atmosphere and earth radiation. In this paper, we presented the detail mathematical formulation to find the altitude up to which cold source brightness temperature is not affected by earth and middle atmosphere radiation. The DREAMPFM data is used to calculate the performance parameters (linearity, sensitivity, dynamic range, and etc.) of the system.

  • PDF

Experimental Study on Two-Phase Flow Parameters of Subcoolet Boiling in Inclined Annulus

  • Lee, Tae-Ho;Kim, Moon-Oh;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.29-48
    • /
    • 1999
  • Local two-phase flow parameters of subcooled flow boiling in inclined annulus were measured to investigate the effect of inclination on the internal flow structure. Two-conductivity probe technique was applied to measure local gas phasic parameters, including void fraction, vapor bubble frequency, chord length, vapor bubble velocity and interfacial area concentration. Local liquid velocity was measured by Pilot tube. Experiments were conducted for three angles of inclination; 0$^{\circ}$(vertical), 30$^{\circ}$, 60$^{\circ}$. The system pressure was maintained at atmospheric pressure. The range of average void fraction was up to 10% and the average liquid superficial velocities were less than 1.3 m/sec. The results of experiments showed that the distributions of two-phase How parameters were influenced by the angle of channel inclination. Especially, the void fraction and chord length distributions were strongly affected by the increase of inclination angle, and flow pattern transition to slug flow was observed depending on the How conditions. The profiles of vapor velocity, liquid velocity and interfacial area concentration were found to be affected by the non-symmetric bubble size distribution in inclined channel. Using the measured distributions of local phasic parameters, an analysis for predicting average void fraction was performed based on the drift flux model and flowing volumetric concentration. And it was demonstrated that the average void fraction can be more appropriately presented in terms of flowing volumetric concentration.

  • PDF