• Title/Summary/Keyword: Atmospheric aerosol

Search Result 741, Processing Time 0.026 seconds

Characteristic of Size-Resolved Water-Soluble Organic Carbon in Atmospheric Aerosol Particles Observed during Daytime and Nighttime in an Urban Area (도시지역 낮.밤 대기에어로졸의 입경 별 수용성 유기탄소의 특성)

  • Park, Seung Shik;Shin, Dong Myung
    • Particle and aerosol research
    • /
    • v.9 no.1
    • /
    • pp.7-21
    • /
    • 2013
  • Twelve-hour size-resolved atmospheric aerosols were measured to determine size distributions of water-soluble organic carbon(WSOC) during daytime and nighttime, and to investigate sources and formation pathways of WSOC in individual particle size classes. Mass, WSOC, ${NO_3}^-$, $K^+$, and $Cl^-$ at day and night showed mostly bimodal size distributions, peaking at the size range of $0.32-0.55{\mu}m$(condensation mode) and $3.1-6.2{\mu}m$(coarse mode), respectively, with a predominant condensation mode and a minor coarse mode. While ${NH_4}^+$ and ${SO_4}^{2-}$ showed unimodal size distributions which peaked between 0.32 and $0.55{\mu}m$. WSOC was enriched into nuclei mode particles(< $0.1{\mu}m$) based on the WSOC-to-mass and WSOC-to-water soluble species ratios. The sources and formation mechanisms of WSOC were inferred in reference to the size distribution characteristics of inorganic species(${SO_4}^{2-}$, ${NO_3}^-$, $K^+$, $Ca^{2+}$, $Na^+$, and $Cl^-$) and carbon monoxide. Nuclei mode WSOC was likely associated with primary combustion sources during daytime and nighttime. Among significant sources contributing to the condensation mode WSOC were homogeneous gas-phase oxidation of VOCs, primary combustion emissions, and fresh(or slightly aged) biomass burning aerosols. The droplet mode WSOC could be attributed to aqueous oxidation of VOCs in clouds, cloud-processed biomass burning aerosols, and small contributions from primary combustion sources. From the correlations between WSOC and soil-related particles, and between WSOC and sea-salt particles, it is suggested that the coarse mode WSOC during daytime is likely to condense on the soil-related particles($K^+$ and $Ca^{2+}$), while the WSOC in the coarse fraction during nighttime is likely associated with the sea-salt particles($Na^+$).

Sensitivity Analysis for CAS500-4 Atmospheric Correction Using Simulated Images and Suggestion of the Use of Geostationary Satellite-based Atmospheric Parameters (모의영상을 이용한 농림위성 대기보정의 주요 파라미터 민감도 분석 및 타위성 산출물 활용 가능성 제시)

  • Kang, Yoojin;Cho, Dongjin;Han, Daehyeon;Im, Jungho;Lim, Joongbin;Oh, Kum-hui;Kwon, Eonhye
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1029-1042
    • /
    • 2021
  • As part of the next-generation Compact Advanced Satellite 500 (CAS500) project, CAS500-4 is scheduled to be launched in 2025 focusing on the remote sensing of agriculture and forestry. To obtain quantitative information on vegetation from satellite images, it is necessary to acquire surface reflectance through atmospheric correction. Thus, it is essential to develop an atmospheric correction method suitable for CAS500-4. Since the absorption and scattering characteristics in the atmosphere vary depending on the wavelength, it is needed to analyze the sensitivity of atmospheric correction parameters such as aerosol optical depth (AOD) and water vapor (WV) considering the wavelengths of CAS500-4. In addition, as CAS500-4 has only five channels (blue, green, red, red edge, and near-infrared), making it difficult to directly calculate key parameters for atmospheric correction, external parameter data should be used. Therefore, thisstudy performed a sensitivity analysis of the key parameters (AOD, WV, and O3) using the simulated images based on Sentinel-2 satellite data, which has similar wavelength specifications to CAS500-4, and examined the possibility of using the products of GEO-KOMPSAT-2A (GK2A) as atmospheric parameters. The sensitivity analysisshowed that AOD wasthe most important parameter with greater sensitivity in visible channels than in the near-infrared region. In particular, since AOD change of 20% causes about a 100% error rate in the blue channel surface reflectance in forests, a highly reliable AOD is needed to obtain accurate surface reflectance. The atmospherically corrected surface reflectance based on the GK2A AOD and WV was compared with the Sentinel-2 L2A reflectance data through the separability index of the known land cover pixels. The result showed that two corrected surface reflectance had similar Seperability index (SI) values, the atmospheric corrected surface reflectance based on the GK2A AOD showed higher SI than the Sentinel-2 L2A reflectance data in short-wavelength channels. Thus, it is judged that the parameters provided by GK2A can be fully utilized for atmospheric correction of the CAS500-4. The research findings will provide a basis for atmospheric correction of the CAS500-4 in the future.

Radiative Properties at King Sejong Station in West Antarctica with the Radiative Transfer Model : A Surface UV-A and Erythemal UV-B Radiation Changes (대기 복사 모형에 의한 남극 세종기지에서의 복사학적 특징 : 지표면에서 UV-A와 Erythemal UV-B 자외선 양 변화)

  • Lee, Kyu-Tae;Lee, Bang-Yong;Won, Young-In;Jee, Joon-Bum;Lee, Won-Hak;Kim, Youn-Joung
    • Ocean and Polar Research
    • /
    • v.25 no.1
    • /
    • pp.9-20
    • /
    • 2003
  • A solar radiation model was used to investigate the UV radiation at the surface offing Sejong Station in West Antarctica. The results calculated by this model were compared with the values measured by UV-Biometer and UV-A meter during 1999-2000. In this study, the parameterization of solar radiative transfer process was based on Chou and Lee(1996). The total ozone amounts measured by Breve. Ozone Spectrophotometer and the aerosol amounts by Nakajima et al.(1996) was used as the input data of the solar radiative transfer model. And the surface albedo is assumed to be 0.20 in summer and 0.85 in winter. The sensitivity test of solar radiative transfer model was done with the variation of total ozone, aerosol amount, and surface albedo. When the cosine of solar zenith angle is 0.3, Erythemal UV-B radiation decreased 73% with the 200% increase of total ozone from 100 DU to 300 DU, but the decrease of UV-A radiation is about 1%. Also, for the same solar zenith angle, UV-A radiation was decreased 31.0% with the variation of aerosol optical thickness from 0.0 to 0.3 and Erythemal UV-B radiation was decreased only 6.1%. The increase of Erythemal W-B radiation with the variation of surface albedo was twice that of UV-A increase. The surface Erythemal UV-B and UV-A radiation calculated by solar raditive transfer model were compared with the measured values fer the relatively clear day at King Sejong Station in West Antarctica. The model calculated Erythemal UV-B radiation at the surface coincide well with the measured values except for cloudy days. But the difference between the model calculated UV-A radiation and the measured value at the surface was large because of cloud scattering effect. So, the cloud property data is needed to calculate the UV radiation more exactly at King Sejong Station in West Antarctica.

Estimation of surface visibility using MODIS AOD (MODIS AOD를 이용한 지상 시정 산출)

  • Park, Jun-Young;Kwon, Tae-Yong;Lee, Jae-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.171-187
    • /
    • 2017
  • Thisstudy presentsthe method for deriving surface visibility from satellite retrieved AOD. To do thisthe height of aerosol distribution isrequired. This distribution would be in thisstudy represented by the two heights; if there is a discrete atmospheric layer, which is physically separated from the above layer, the upper height of the layer is assumed as Aerosol Layer Height(ALH). In this case there is clear minimum in the Relative Humanity vertical distribution. Otherwise PBLH(Planetary Boundary Layer Height) is used. These heights are obtained from the forecast data of Regional Data Assimilation and Prediction System(RDAPS). The surface visibility is estimated from MODIS AOD and ALH/PBLH, using Koschmieder's Law for ALH and the empirical relations for PBLH. The estimated visibility are evaluated from the visibility measurements of 9 eve-measurement stations and 17 PWD22 stations for the spring of 2015 and 2016. Verification of the estimated visibility shows that there are considerable differencesin statistical verification value depending on stations, years, morning(Terra)/afternoon(Aqua). The better results are shown in the midwest part of korean peninsula for Terra of 2016. The results are summarized as; correlation coefficients of higher than 0.65, for low visibility RMSE of 3.62 km and ME of 2.29 km or less, POD of higher than 0.65 and FAR of 0.5 or less. Verification results were better with increase in the number of low-visibility data.

The Changes of UV-B Radiation at the Surface due to Stratospheric Aerosols (성층권 에어로졸에 의한 지표면 UV-B 복사량 변동)

  • Jai-Ho Oh;Joon-Hee Jung;Jeong-Woo Kim
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.21 no.1
    • /
    • pp.31-46
    • /
    • 1993
  • A radiative transfer model with two-stream/delta-Eddington approximation has been developed to calculate the vertical distributions of atmospheric heating rates and radiative fluxes. The performance of the model has been evaluated by comparison with the results of ICRCCM (Intercomparison of radiative codes in climate models). It has been demonstrated that the presented model has a capability to calculate the solar radiation not only accurately but also economically. The characteristics of ultraviolet-B radiation (UV-B; 280-320nm) are examined by comparison of relation between the flux at the top of atmosphere and that at the surface. The relation of UV-B is quadratic due to the strong ozone absorption in this band. Also, the dependence of the UV-B radiation on the stratospheric ozone depletion and stratospheric aerosol haze due to volcanic eruption on the stratospheric ozone depletion and stratospheric aerosol haze due to volcanic eruption has been tested with various solar zenith angles. The surface UV-B increases as the solar zenith angle increases. The existence of stratospheric aerosols causes an increase in the planetary albedo due to the aerosols' backscattering. The planetary albedo with aerosol's effect has been increases as the solar zenith angle is not sensitive. It may be caused by the fact that the aerosols' scattering effect becomes saturated with the relatively long path length in a large solar zenith angle. Finally, the regional impact of stratospheric aerosols due to volcanic eruption on the intensity of UV-B radiation at the surface has been estimated. A direct effect is that the flux is diminished at the low latitudes, while it is enhanced in the high latitudes by the aerosols' photon trap or twilight effect. In the high latitudes, both aerosols' scattering and ozone absorption have strong and opposite impacts to the surface UV-B radiation is located at the mid-latitudes during spring season in both hemispheres.

  • PDF

Analysis of the Impact of Surface Reflectance Error Retrieved from 6SV for KOMPSAT-3A according to MODIS AOD Expected Error (MODIS AOD 기대 오차에 따른 6SV 기반 KOMPSAT-3A 채널별 지표반사도 오차 영향 분석)

  • Daeseong Jung;Suyoung Sim;Jongho Woo;Nayeon Kim;Sungwoo Park;Honghee Kim;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1517-1522
    • /
    • 2023
  • This study evaluates the impact of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) expected error (EE) on the accuracy of surface reflectance (SR) derived from the KOMPSAT-3A satellite, utilizing the Second Simulation of the Satellite Signal in the Solar Spectrum Vector radiative transfer model. By considering a range of ground-based AOD and the resultant MODIS AOD EE, the research identifies significant influences on SR accuracy, particularly under high solar zenith angles(SZA) and shorter wavelengths. The study's simulations reveal that SR errors increase with shorter wavelengths and higher SZAs, highlighting the necessity for further research to improve atmospheric correction algorithms by incorporating wavelength and SZA considerations. Additionally, the study provides foundational data for better understanding the use of AOD data from other satellites in atmospheric correction processes and contributes to advancing atmospheric correction technologies.

Single-particle Characterization of Aerosol Particles Collected Nearby a Lead Smelter in China

  • Jung, Hae-Jin;Song, Young-Chul;Liu, Xiande;Li, Yuwu;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.83-95
    • /
    • 2012
  • China has been a top producer and exporter of refined lead products in the world since the year 2000. After the phasing-out of leaded gasoline in the late 1990s, non-ferrous metallurgy and coal combustion have been identified as potential major sources of aerosol lead in China. This paper presents the single particle analytical results of ambient aerosol particles collected near a lead smelter using a scanning electron microscopy- energy dispersive x-ray spectroscopy (SEM-EDX). Aerosol particle samples were collected over a 24-hour period, starting from 8 pm on 31 May 2002, using a high volume TSP sampler. For this near source sample, 73 particles among 377 particles analyzed (accounting for 19.4%) were lead-containing particles mixed with other species (S, Cl, K, Ca, and/or C), which probably appeared to be from a nearby lead smelter. Lead-containing particles of less than $2{\mu}m$ size in the near source sample were most frequently encountered with the relative abundances of 42%. SEM-EDX analysis of individual standard particles, such as PbO, PbS, $PbSO_4$, $PbCl_2$, and $PbCO_3$, was also performed to assist in the clear identification of lead-containing aerosol particles. Lead-containing particles were frequently associated with arsenic and zinc, indicating that the smelter had emitted those species during the non-ferrous metallurgical process. The frequently encountered particles following the lead-containing particles were mineral dust particles, such as aluminosilicates (denoted as AlSi), $SiO_2$, and $CaCO_3$. Nitrate- and sulfate-containing particles were encountered frequently in $2-4{\mu}m$ size range, and existed mostly in the forms of $Ca(NO_3,SO_4)/C$, $(Mg,Ca)SO_4/C$, and $AlSi+(NO_3,SO_4)$. Particles containing metals (e.g., Fe, Cu, and As) in this near source sample had relative abundances of approximately 10%. Although the airborne particles collected near the lead smelter contained elevated levels of lead, other types of particles, such as $CaCO_3$-containing, carbonaceous, metal-containing, nitrates, sulfates, and fly-ash particles, showed the unique signatures of samples influenced by emissions from the lead smelter.

Removal Performance of Sticky Paint Aerosol Control System Generated from Small Scale Car Paint Overspray Booth (소형 자동차 페인트 도장부스에서 발생하는 점착성 paint aerosol 처리장치에서 제거성능)

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Sohn, Jong-Ryeul;Park, Young-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.54-62
    • /
    • 2015
  • Small scale paint overspray booths are being operated nationwidely, for repair of passenger car body parts. paint aerosols are emitted from the paint overspray booth in operations. In paint overspray booth operations without ventilation system and air pollutants collection unit, it may land on nearby equipment. In this study a removal of sticky paint aerosol for application of the small-scale overspray paint booth. it's cause the surface of filter bag from generated sticky paint aerosol. To remove adhesion of paint aerosol the agglomerating agents are injected and mixed with sticky paint aerosols prior to reach the filter bag. The paint spray rate was set as $10{\pm}5g/min$ from air-atomized spray guns in the spray booth, injection rate of agglomerating was $10{\pm}5g/min$ in the mixing chamber. The filtration velocity including air pollutants varied from 0.2 m/min to 0.4 m/min. Bag cleaning air pressure was set as $5.0kg_f/min$ for detaching dust cake from surface of filter bag. Bag cleaning interval at the filtration velocity of 0.2 m/min was around 3 times longer than that of the 0.4 m/min. The residual pressure drop maintained highest value at the highest filtration velocity. Fractional efficiency of 99.952%~99.971% was possible to maintain for the particle size of 2.5 microns. Total collection efficiency at the filtration velocity of 0.2 m/min was 99.42%. During this study we could confirm high collection efficiency and long cleaning intervals for the test with filtration velocity of 0.2 m/min indicating an optimal value for the given dimensions of the test unit and test operating conditions.

Seasonal Characteristics of Organic Carbon and Elemental Carbon in PM2.5 in Daejeon (대전지역 대기 중 PM2.5의 유기탄소와 원소탄소의 계절별 특성 연구)

  • Kim, Hyosun;Jung, Jinsang;Lee, Jinhong;Lee, Sangil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.28-40
    • /
    • 2015
  • To investigate the seasonal variations of carbonaceous aerosol in Daejeon, OC (organic carbon), EC (elemental carbon) and WSOC (water soluble organic carbon) in $PM_{2.5}$ samples collected from March 2012 to February 2013 were analyzed. $PM_{2.5}$ concentrations were estimated by the sum of organic matter ($1.6{\times}OC$), EC, water-soluble ions ($Na^+$, $NH_4{^{+}}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, $SO_4{^{2-}}$, $NO_3{^{-}}$). The estimated $PM_{2.5}$ concentrations were relatively higher in winter ($29.50{\pm}12.04{\mu}g/m^3$) than those in summer ($13.72{\pm}6.92{\mu}g/m^3$). Carbonaceous aerosol ($1.6{\times}OC+EC$) was a significant portion (34~47%) of $PM_{2.5}$ in all season. The seasonally averaged OC and WSOC concentrations were relatively higher in winter ($6.57{\times}3.48{\mu}gC/m^3$ and $4.07{\pm}2.53{\mu}gC/m^3$ respectively), than those in summer ($3.07{\pm}0.8{\mu}gC/m^3$, $1.77{\pm}0.68{\mu}gC/m^3$, respectively). OC was correlated well with WSOC in all season, indicating that they have similar emission sources or formation processes. In summer, both OC and WSOC were weakly correlated with EC and also poorly correlated with a well-known biomass burning tracer, levoglucosan, while WSOC is highly correlated with SOC (secondary organic carbon) and $O_3$. The results suggest that carbonaceous aerosol in summer was highly influenced by secondary formation rather than primary emissions. In contrast, both OC and WSOC in winter were strongly correlated with EC and levoglucosan, indicating that carbonaceous aerosol in winter was closely related to primary source such as biomass burning. The contribution of biomass burning to $PM_{2.5}$ OC and EC, which was estimated using the levoglucosan to OC and EC ratios of potential biomass burning sources, was about $70{\pm}15%$ and $31{\pm}10%$, respectively, in winter. Results from this study clearly show that $PM_{2.5}$ OC has seasonally different chemical characteristics and origins.

Satellite-Measured Vegetation Phenology and Atmospheric Aerosol Time Series in the Korean Peninsula (위성기반의 한반도 식물계절학적 패턴과 대기 에어로졸의 시계열 특성 분석)

  • Park, Sunyurp
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.4
    • /
    • pp.497-508
    • /
    • 2013
  • The objective of this study is to determine the spatiotemporal influences of climatic factors and atmospheric aerosol on phenological cycles of the Korea Peninsular on a regional scale. High temporal-resolution satellite data can overcome limitations of ground-based phenological studies with reasonable spatial resolution. Study results showed that phenological characteristics were similar among evergreen forest, deciduous forest, and grassland, while the inter-annual vegetation index amplitude of mixed forest was differentiated from the other forest types. Forest types with high VI amplitude reached their maximum VI values earlier, but this relationship was not observed within the same forest type. The phase of VI, or the peak time of greenness, was significantly influenced by air temperature. Aerosol optical thickness (AOT) time-series showed strong seasonal and inter-annual variations. Generally, aerosol concentrations were peaked during late spring and early summer. However, inter-annual AOT variations did not have significant relationships with those of VIs. Weak relationships between AOT amplitude and EVI amplitude only indicates that there would be potential impacts of aerosols on vegetation growth in the long run.

  • PDF