• Title/Summary/Keyword: Atmospheric Input

Search Result 296, Processing Time 0.029 seconds

Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network (심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구)

  • Taeyoon Eom;Kwangnyun Kim;Yonghan Jo;Keunyong Song;Yunjeong Lee;Yun Gon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.207-221
    • /
    • 2023
  • This study suggests deep neural network models for estimating air temperature with Level 1B (L1B) datasets of GEO-KOMPSAT-2A (GK-2A). The temperature at 1.5 m above the ground impact not only daily life but also weather warnings such as cold and heat waves. There are many studies to assume the air temperature from the land surface temperature (LST) retrieved from satellites because the air temperature has a strong relationship with the LST. However, an algorithm of the LST, Level 2 output of GK-2A, works only clear sky pixels. To overcome the cloud effects, we apply a deep neural network (DNN) model to assume the air temperature with L1B calibrated for radiometric and geometrics from raw satellite data and compare the model with a linear regression model between LST and air temperature. The root mean square errors (RMSE) of the air temperature for model outputs are used to evaluate the model. The number of 95 in-situ air temperature data was 2,496,634 and the ratio of datasets paired with LST and L1B show 42.1% and 98.4%. The training years are 2020 and 2021 and 2022 is used to validate. The DNN model is designed with an input layer taking 16 channels and four hidden fully connected layers to assume an air temperature. As a result of the model using 16 bands of L1B, the DNN with RMSE 2.22℃ showed great performance than the baseline model with RMSE 3.55℃ on clear sky conditions and the total RMSE including overcast samples was 3.33℃. It is suggested that the DNN is able to overcome cloud effects. However, it showed different characteristics in seasonal and hourly analysis and needed to append solar information as inputs to make a general DNN model because the summer and winter seasons showed a low coefficient of determinations with high standard deviations.

Assessment of Emission Data for Improvement of Air Quality Simulation in Ulsan (울산 지역 대기질 모의능력 개선을 위한 배출량자료 평가)

  • Jo, Yu-Jin;Kim, Cheol-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.5
    • /
    • pp.456-471
    • /
    • 2015
  • Emission source term is one of the strong controlling factors for the air quality simulation capability, particularly over the urban area. Ulsan is an industrial area and frequently required to simulate for environmental assessment. In this study, two CAPSS (Clean Air Policy Support System) emission data; CAPSS-2003 and CAPSS-2010 in Ulsan, were employed as an input data for WRF-CMAQ air quality model for emission assessment. The simulated results were compared with observations for the local emission dominant synoptic conditions which had negative vorticities and lower geostrophic wind speed at 850hPa weather maps. The measurements of CO, $NO_2$, $SO_2$ and $PM_{10}$ concentrations were compared with simulations and the 'scaling factors' of emissions for CO, $NO_2$, $SO_2$, and $PM_{10}$ were suggested in in aggregative and quantitative manner. The results showed that CAPSS-2003 showed no critical discrepancies of CO and $NO_2$ observations with simulations, while $SO_2$ was overestimated by a factor of more than 12, while $PM_{10}$ was underestimated by a factor of more than 20 times. However, CAPSS-2010 case showed that $SO_2$ and $PM_{10}$ emission were much more improved than CAPSS-2003. However, $SO_2$ was still overestimated by a factor of more than 2, and $PM_{10}$ underestimated by a factor of 5, while there was no significant improvement for CO and $NO_2$ emission. The estimated factors identified in this study can be used as'scaling factors'for optimizing the emissions of air pollutants, particularly $SO_2$ and $PM_{10}$ for the realistic air quality simulation in Ulsan.

Urban Climate Impact Assessment Reflecting Urban Planning Scenarios - Connecting Green Network Across the North and South in Seoul - (서울 도시계획 정책을 적용한 기후영향평가 - 남북녹지축 조성사업을 대상으로 -)

  • Kwon, Hyuk-Gi;Yang, Ho-Jin;Yi, Chaeyeon;Kim, Yeon-Hee;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.134-153
    • /
    • 2015
  • When making urban planning, it is important to understand climate effect caused by urban structural changes. Seoul city applies UPIS(Urban Plan Information System) which provides information on urban planning scenario. Technology for analyzing climate effect resulted from urban planning needs to developed by linking urban planning scenario provided by UPIS and climate analysis model, CAS(Climate Analysis Seoul). CAS develops for analyzing urban climate conditions to provide realistic information considering local air temperature and wind flows. Quantitative analyses conducted by CAS for the production, transportation, and stagnation of cold air, wind flow and thermal conditions by incorporating GIS analysis on land cover and elevation and meteorological analysis from MetPhoMod(Meteorology and atmospheric Photochemistry Meso-scale model). In order to reflect land cover and elevation of the latest information, CAS used to highly accurate raster data (1m) sourced from LiDAR survey and KOMPSAT-2(KOrea Multi-Purpose SATellite) satellite image(4m). For more realistic representation of land surface characteristic, DSM(Digital Surface Model) and DTM(Digital Terrain Model) data used as an input data for CFD(Computational Fluid Dynamics) model. Eight inflow directions considered to investigate the change of flow pattern, wind speed according to reconstruction and change of thermal environment by connecting green area formation. Also, MetPhoMod in CAS data used to consider realistic weather condition. The result show that wind corridors change due to reconstruction. As a whole surface temperature around target area decreases due to connecting green area formation. CFD model coupled with CAS is possible to evaluate the wind corridor and heat environment before/after reconstruction and connecting green area formation. In This study, analysis of climate impact before and after created the green area, which is part of 'Connecting green network across the north and south in Seoul' plan, one of the '2020 Seoul master plan'.

Validation of Satellite Scatterometer Sea-Surface Wind Vectors (MetOp-A/B ASCAT) in the Korean Coastal Region (한반도 연안해역에서 인공위성 산란계(MetOp-A/B ASCAT) 해상풍 검증)

  • Kwak, Byeong-Dae;Park, Kyung-Ae;Woo, Hye-Jin;Kim, Hee-Young;Hong, Sung-Eun;Sohn, Eun-Ha
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.536-555
    • /
    • 2021
  • Sea-surface wind is an important variable in ocean-atmosphere interactions, leading to the changes in ocean surface currents and circulation, mixed layers, and heat flux. With the development of satellite technology, sea-surface winds data retrieved from scatterometer observation data have been used for various purposes. In a complex marine environment such as the Korean Peninsula coast, scatterometer-observed sea-surface wind is an important factor for analyzing ocean and atmospheric phenomena. Therefore, the validation results of wind accuracy can be used for diverse applications. In this study, the sea-surface winds derived from ASCAT (Advanced SCATterometer) mounted on MetOp-A/B (METeorological Operational Satellite-A/B) were validated compared to in-situ wind measurements at 16 marine buoy stations around the Korean Peninsula from January to December 2020. The buoy winds measured at a height of 4-5 m from the sea surface were converted to 10-m neutral winds using the LKB (Liu-Katsaros-Businger) model. The matchup procedure produced 5,544 and 10,051 collocation points for MetOp-A and MetOp-B, respectively. The root mean square errors (RMSE) were 1.36 and 1.28 m s-1, and bias errors amounted to 0.44 and 0.65 m s-1 for MetOp-A and MetOp-B, respectively. The wind directions of both scatterometers exhibited negative biases of -8.03° and -6.97° and RMSE values of 32.46° and 36.06° for MetOp-A and MetOp-B, respectively. These errors were likely associated with the stratification and dynamics of the marine-atmospheric boundary layer. In the seas around the Korean Peninsula, the sea-surface winds of the ASCAT tended to be more overestimated than the in-situ wind speeds, particularly at weak wind speeds. In addition, the closer the distance from the coast, the more the amplification of error. The present results could contribute to the development of a prediction model as improved input data and the understanding of air-sea interaction and impact of typhoons in the coastal regions around the Korean Peninsula.

Tracing the Drift Ice Using the Particle Tracking Method in the Arctic Ocean (북극해에서 입자추적 방법을 이용한 유빙 추적 연구)

  • Park, GwangSeob;Kim, Hyun-Cheol;Lee, Taehee;Son, Young Baek
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1299-1310
    • /
    • 2018
  • In this study, we analyzed distribution and movement trends using in-situ observations and particle tracking methods to understand the movement of the drift ice in the Arctic Ocean. The in-situ movement data of the drift ice in the Arctic Ocean used ITP (Ice-Tethered Profiler) provided by NOAA (National Oceanic and Atmospheric Administration) from 2009 to 2018, which was analyzed with the location and speed for each year. Particle tracking simulates the movement of the drift ice using daily current and wind data provided by HYCOM (Hybrid Coordinate Ocean Model) and ECMWF (European Centre for Medium-Range Weather Forecasts, 2009-2017). In order to simulate the movement of the drift ice throughout the Arctic Ocean, ITP data, a field observation data, were used as input to calculate the relationship between the current and wind and follow up the Lagrangian particle tracking. Particle tracking simulations were conducted with two experiments taking into account the effects of current and the combined effects of current and wind, most of which were reproduced in the same way as in-situ observations, given the effects of currents and winds. The movement of the drift ice in the Arctic Ocean was reproduced using a wind-imposed equation, which analyzed the movement of the drift ice in a particular year. In 2010, the Arctic Ocean Index (AOI) was a negative year, with particles clearly moving along the Beaufort Gyre, resulting in relatively large movements in Beaufort Sea. On the other hand, in 2017 AOI was a positive year, with most particles not affected by Gyre, resulting in relatively low speed and distance. Around the pole, the speed of the drift ice is lower in 2017 than 2010. From seasonal characteristics in 2010 and 2017, the movement of the drift ice increase in winter 2010 (0.22 m/s) and decrease to spring 2010 (0.16 m/s). In the case of 2017, the movement is increased in summer (0.22 m/s) and decreased to spring time (0.13 m/s). As a result, the particle tracking method will be appropriate to understand long-term drift ice movement trends by linking them with satellite data in place of limited field observations.

Development of High-Resolution Fog Detection Algorithm for Daytime by Fusing GK2A/AMI and GK2B/GOCI-II Data (GK2A/AMI와 GK2B/GOCI-II 자료를 융합 활용한 주간 고해상도 안개 탐지 알고리즘 개발)

  • Ha-Yeong Yu;Myoung-Seok Suh
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1779-1790
    • /
    • 2023
  • Satellite-based fog detection algorithms are being developed to detect fog in real-time over a wide area, with a focus on the Korean Peninsula (KorPen). The GEO-KOMPSAT-2A/Advanced Meteorological Imager (GK2A/AMI, GK2A) satellite offers an excellent temporal resolution (10 min) and a spatial resolution (500 m), while GEO-KOMPSAT-2B/Geostationary Ocean Color Imager-II (GK2B/GOCI-II, GK2B) provides an excellent spatial resolution (250 m) but poor temporal resolution (1 h) with only visible channels. To enhance the fog detection level (10 min, 250 m), we developed a fused GK2AB fog detection algorithm (FDA) of GK2A and GK2B. The GK2AB FDA comprises three main steps. First, the Korea Meteorological Satellite Center's GK2A daytime fog detection algorithm is utilized to detect fog, considering various optical and physical characteristics. In the second step, GK2B data is extrapolated to 10-min intervals by matching GK2A pixels based on the closest time and location when GK2B observes the KorPen. For reflectance, GK2B normalized visible (NVIS) is corrected using GK2A NVIS of the same time, considering the difference in wavelength range and observation geometry. GK2B NVIS is extrapolated at 10-min intervals using the 10-min changes in GK2A NVIS. In the final step, the extrapolated GK2B NVIS, solar zenith angle, and outputs of GK2A FDA are utilized as input data for machine learning (decision tree) to develop the GK2AB FDA, which detects fog at a resolution of 250 m and a 10-min interval based on geographical locations. Six and four cases were used for the training and validation of GK2AB FDA, respectively. Quantitative verification of GK2AB FDA utilized ground observation data on visibility, wind speed, and relative humidity. Compared to GK2A FDA, GK2AB FDA exhibited a fourfold increase in spatial resolution, resulting in more detailed discrimination between fog and non-fog pixels. In general, irrespective of the validation method, the probability of detection (POD) and the Hanssen-Kuiper Skill score (KSS) are high or similar, indicating that it better detects previously undetected fog pixels. However, GK2AB FDA, compared to GK2A FDA, tends to over-detect fog with a higher false alarm ratio and bias.

Prediction of Ammonia Emission Rate from Field-applied Animal Manure using the Artificial Neural Network (인공신경망을 이용한 시비된 분뇨로부터의 암모니아 방출량 예측)

  • Moon, Young-Sil;Lim, Youngil;Kim, Tae-Wan
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.133-142
    • /
    • 2007
  • As the environmental pollution caused by excessive uses of chemical fertilizers and pesticides is aggravated, organic farming using pasture and livestock manure is gaining an increased necessity. The application rate of the organic farming materials to the field is determined as a function of crops and soil types, weather and cultivation surroundings. When livestock manure is used for organic farming materials, the volatilization of ammonia from field-spread animal manure is a major source of atmospheric pollution and leads to a significant reduction in the fertilizer value of the manure. Therefore, an ammonia emission model should be presented to reduce the ammonia emission and to know appropriate application rate of manure. In this study, the ammonia emission rate from field-applied pig manure is predicted using an artificial neural network (ANN) method, where the Michaelis-Menten equation is employed for the ammonia emission rate model. Two model parameters (total loss of ammonia emission rate and time to reach the half of the total emission rate) of the model are predicted using a feedforward-backpropagation ANN on the basis of the ALFAM (Ammonia Loss from Field-applied Animal Manure) database in Europe. The relative importance among 15 input variables influencing ammonia loss is identified using the weight partitioning method. As a result, the ammonia emission is influenced mush by the weather and the manure state.

A Study on Analyzing the Validity between the Predicted and Measured Concentrations of VOCs in the Atmosphere Using the CalTOX Model (CalTOX 모델에 의한 휘발성유기화합물의 대기 중 예측 농도와 실측 농도간의 타당성 분석에 관한 연구)

  • Kim, Ok;Lee, Minwoo;Park, Sanghyun;Park, Changyoung;Song, Youngho;Kim, Byeongbin;Choi, Jinha;Lee, Jinheon
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.5
    • /
    • pp.576-587
    • /
    • 2020
  • Objectives: This study calculated local residents exposures to VOCs (Volatile Organic Compounds) released into the atmosphere using the CalTOX model and carried out uncertainty analysis and sensitivity analysis. The model validity was analyzed by comparing the predicted and the actual atmospheric concentrations. Methods: Uncertainty was parsed by conducting a Monte Carlo simulation. Sensitivity was dissected with the regression (coefficients) method. The model validity was analyzed by applying r2 (coefficient of determination), RMSE (root mean square error), and the Nash-Sutcliffe EI (efficiency index) formula. Results: Among the concentrations in the atmosphere in this study, benzene was the highest and the lifetime average daily dose of benzene and the average daily dose of xylene were high. In terms of the sensitivity analysis outcome, the source term to air, exposure time, indoors resting (ETri), exposure time, outdoors at home (ETao), yearly average wind speed (v_w), contaminated area in ㎡ (Area), active breathing rate (BRa), resting breathing rate (BRr), exposure time, and active indoors (ETai) were elicited as input variables having great influence upon this model. In consequence of inspecting the validity of the model, r2 appeared to be a value close to 1 and RMSE appeared to be a value close to 0, but EI indicated unacceptable model efficiency. To supplement this value, the regression formula was derived for benzene with y=0.002+15.48x, ethylbenzene with y ≡ 0.001+57.240x, styrene with y=0.000+42.249x, toluene with y=0.004+91.588x, and xylene with y=0.000+0.007x. Conclusions: In consequence of inspecting the validity of the model, r2 appeared to be a value close to 1 and RMSE appeared to be a value close to 0, but EI indicated unacceptable model efficiency. This will be able to be used as base data for securing the accuracy and reliability of the model.

The Conversion of Methane with Oxygenated Gases using Atmospheric Dielectric Barrier Discharge (배리어방전을 이용한 메탄전환반응에서 함산소 가스가 전환율 및 생성물변화에 미치는 영향)

  • Lee Kwang-Sik;Yeo Yeong-Koo;Choi Jae-Wook;Lee Hwa-Ung;Song Hyung-Keun;Na Byung-Ki
    • Journal of Energy Engineering
    • /
    • v.15 no.1 s.45
    • /
    • pp.52-59
    • /
    • 2006
  • This paper examined the conversion of methane to hydrogen and other higher hydrocarbons using dielectric barrier discharge with AC pulse power. Two metal electrodes of a coaxial-type plasma reactor were separated by gas gap and an alumina tube. The inner electrode was located inside the alumina tube. The alumina tube was located inside the stainless steel tube, which was used as the outer electrode. Effect of feed gas composition (methane, oxygen, argon, water and helium), flow rate, applied frequency, input volt-age on methane conversion and product distribution were studied. The major products of plasma chemical reactions were ethylene, ethane, propane, buthane, hydrogen, carbon monoxide and carbon dioxide. The increment of applied voltage and the usage of inert gas as the background (helium and argon) enhanced the selectivity of hydrocarbons and methane conversion. The addition of water in the feed stream enhanced the conversion of methane and yield of hydrogen. Higher voltage leads to higher yield of $C_2H_6,\;C_3H_8,\;C_4H_{10}$ and yield or $C_2H_2\;and\;C_2H_4$ appeared highly in lower voltage.

Quantitative Flood Forecasting Using Remotely-Sensed Data and Neural Networks

  • Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05a
    • /
    • pp.43-50
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict streamflow and flash floods. Previously, neural networks were used to develop a Quantitative Precipitation Forecasting (QPF) model that highly improved forecasting skill at specific locations in Pennsylvania, using both Numerical Weather Prediction (NWP) output and rainfall and radiosonde data. The objective of this study was to improve an existing artificial neural network model and incorporate the evolving structure and frequency of intense weather systems in the mid-Atlantic region of the United States for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as life time, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. The new Quantitative Flood Forecasting (QFF) model was applied to predict streamflow peaks with lead-times of 18 and 24 hours over a five year period in 4 watersheds on the leeward side of the Appalachian mountains in the mid-Atlantic region. Threat scores consistently above .6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 4% and up to 6% were attained for the 24 hour lead-time forecasts. This work demonstrates that multisensor data cast into an expert information system such as neural networks, if built upon scientific understanding of regional hydrometeorology, can lead to significant gains in the forecast skill of extreme rainfall and associated floods. In particular, this study validates our hypothesis that accurate and extended flood forecast lead-times can be attained by taking into consideration the synoptic evolution of atmospheric conditions extracted from the analysis of large-area remotely sensed imagery While physically-based numerical weather prediction and river routing models cannot accurately depict complex natural non-linear processes, and thus have difficulty in simulating extreme events such as heavy rainfall and floods, data-driven approaches should be viewed as a strong alternative in operational hydrology. This is especially more pertinent at a time when the diversity of sensors in satellites and ground-based operational weather monitoring systems provide large volumes of data on a real-time basis.

  • PDF