• Title/Summary/Keyword: Atmospheric Effect

Search Result 1,587, Processing Time 0.036 seconds

Image Enhancement Algorithm and its Application in Image Defogging

  • Jun Cao
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.465-473
    • /
    • 2023
  • An image enhancement algorithm and image defogging method are studied in this paper. The formation of fog and the characteristics of fog image are analyzed, and the fog image is preprocessed by histogram equalization method; then the additive white noise is removed by foggy image attenuation model, the atmospheric scattering physical model is constructed, the image detail characteristics are enhanced by image enhancement method, and the visual effect of defogging image is enhanced by guided filtering method. The proposed method has a good defogging effect on the image. When the number of training iterations is 3,000, the peak signal-to-noise ratio of the proposed method is 43.29 dB and the image structure similarity is 0.9616, indicating excellent image defogging effect.

A Comparison of the Atmospheric CO2 Concentrations Obtained by an Inverse Modeling System and Passenger Aircraft Based Measurement (인버스 모델링 방법을 통해 추정된 대기 중 이산화탄소 농도와 항공 관측 자료 비교)

  • Kim, Hyunjung;Kim, Hyun Mee;Kim, Jinwoong;Cho, Chun-Ho
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.387-400
    • /
    • 2016
  • In this study, the atmospheric $CO_2$ concentrations estimated by CT2013B, a recent version of CarbonTracker, are compared with $CO_2$ measurements from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project during 2010-2011. CarbonTracker is an inversion system that estimates surface $CO_2$ fluxes using atmospheric $CO_2$ concentrations. Overall, the model results represented the atmospheric $CO_2$ concentrations well with a slight overestimation compared to observations. In the case of horizontal distribution, variations in the model and observation difference were large in northern Eurasia because most of the model and data mismatch were located in the stratosphere where the model could not represent $CO_2$ variations well enough due to low model resolution at high altitude and existing phase shift from the troposphere. In addition, the model and observation difference became larger in boreal summer. Despite relatively large differences at high latitudes and in boreal summer, overall, the modeled $CO_2$ concentrations fitted well to observations. Vertical profiles of modeled and observed $CO_2$ concentrations showed that the model overestimates the observations at all altitudes, showing nearly constant differences, which implies that the surface $CO_2$ concentration is transported well vertically in the transport model. At Narita, overall differences were small, although the correlation between modeled and observed $CO_2$ concentrations decreased at higher altitude, showing relatively large differences above 225 hPa. The vertical profiles at Moscow and Delhi located on land and at Hawaii on the ocean showed that the model is less accurate on land than on the ocean due to various effects (e.g., biospheric effect) on land compared to the homogeneous ocean surface.

Characteristics of Atmospheric Circulation and Heat Source related to Winter Cold Surge in Korea (한반도 겨울철 한파와 관련된 대기 순환과 열원의 특성)

  • Kim Maeng-Ki;Shin Sung-Chul;Lee Woo-Seop
    • Journal of the Korean earth science society
    • /
    • v.26 no.6
    • /
    • pp.560-572
    • /
    • 2005
  • This study investigates the characteristics of atmospheric circulation and the heat source $(Q_1)$ related to the winter cold surge in Korea from 1979 to 1999. The occurrence frequency of cold surge is about one event per year and $60\%$ of the total events occurred during the former period, before 1989. During the cold surge, the pressure pattern shows more dominant east-west dipole circulation pattern in the lower troposphere and the effect of upper level trough is stronger than normal cases. Temperature falling pattern over Korea shows that the pattern opposite to the temperature structure over Lake Baikal and temperature change has opposite signs between the low-middle level and upper level, with the boundary at 400 hPa. The analysis of heat source shows that atmospheric cooling by cold advection during the cold surge is balanced by adiabatic warming due to downward motion, indicating that the movement path of cold core is associated with that of heat sink. Therefore, the movement mechanism of the heat source and sink should be well known for understanding the maintenance mechanism of cold surge and predicting cold surges.

Atmospheric Correction Effectiveness Analysis and Land Cover Classification Using Airborne Hyperspectral Imagery (항공 하이퍼스펙트럴 영상의 대기보정 효과 분석 및 토지피복 분류)

  • Lee, Jin-Duk;Bhang, Kon-Joon;Joo, Young-Don
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.31-41
    • /
    • 2016
  • Atmospheric correction as a preprocessing work should be performed to conduct accurately landcover/landuse classification using hyperspectral imagery. Atmospheric correction on airborne hyperspectral images was conducted and then the effect of atmospheric correction by comparing spectral reflectance characteristics before and after atmospheric correction for a few landuse classes was analyzed. In addition, land cover classification was first conducted respectively by the maximum likelihood method and the spectral angle mapper method after atmospheric correction and then the results were compared. Applying the spectral angle mapper method, the sea water area were able to be classified with the minimum of noise at the threshold angle of 4 arc degree. It is considered that object-based classification method, which take into account of scale, spectral information, shape, texture and so forth comprehensively, is more advantageous than pixel-based classification methods in conducting landcover classification of the coastal area with hyperspectral images in which even the same object represents various spectral characteristics.

CFD Study on the Influence of Atmospheric Stability on Near-field Pollutant Dispersion from Rooftop Emissions

  • Jeong, Sang Jin;Kim, A Ra
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • The aim of this work is to investigate the effect of atmospheric stability on near-field pollutant dispersion from rooftop emissions of a single cubic building using computational fluid dynamics (CFD). This paper used the shear stress transport (here after SST) k-${\omega}$ model for predicting the flow and pollutant dispersion around an isolated cubic building. CFD simulations were performed with two emission rates and six atmospheric stability conditions. The results of the simulations were compared with the data from wind tunnel experiments and the result of simulations obtained by previous studies in neutral atmospheric condition. The results indicate that the reattachment length on the roof ($X_R$) obtained by computations show good agreement with the experimental results. However, the reattachment length of the rooftop of the building ($X_F$) is greatly overestimated compared to the findings of wind tunnel test. The result also shows that the general distribution of dimensionless concentration given by SST k-${\omega}$ at the side and leeward wall surfaces is similar to that of the experiment. In unstable conditions, the length of the rooftop cavity was decreased. In stable conditions, the horizontal velocity in the lower part around the building was increased and the vertical velocity around the building was decreased. Stratification increased the horizontal cavity length and width near surface and unstable stratification decreased the horizontal cavity length and width near surface. Maintained stability increases the lateral spread of the plume on the leeward surface. The concentration levels close to the ground's surface under stable conditions were higher than under unstable and neutral conditions.

Effects of Resolution, Cumulus Parameterization Scheme, and Probability Forecasting on Precipitation Forecasts in a High-Resolution Limited-Area Ensemble Prediction System

  • On, Nuri;Kim, Hyun Mee;Kim, SeHyun
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.623-637
    • /
    • 2018
  • This study investigates the effects of horizontal resolution, cumulus parameterization scheme (CPS), and probability forecasting on precipitation forecasts over the Korean Peninsula from 00 UTC 15 August to 12 UTC 14 September 2013, using the limited-area ensemble prediction system (LEPS) of the Korea Meteorological Administration. To investigate the effect of resolution, the control members of the LEPS with 1.5- and 3-km resolution were compared. Two 3-km experiments with and without the CPS were conducted for the control member, because a 3-km resolution lies within the gray zone. For probability forecasting, 12 ensemble members with 3-km resolution were run using the LEPS. The forecast performance was evaluated for both the whole study period and precipitation cases categorized by synoptic forcing. The performance of precipitation forecasts using the 1.5-km resolution was better than that using the 3-km resolution for both the total period and individual cases. The result of the 3-km resolution experiment with the CPS did not differ significantly from that without it. The 3-km ensemble mean and probability matching (PM) performed better than the 3-km control member, regardless of the use of the CPS. The PM complemented the defect of the ensemble mean, which better predicts precipitation regions but underestimates precipitation amount by averaging ensembles, compared to the control member. Further, both the 3-km ensemble mean and PM outperformed the 1.5-km control member, which implies that the lower performance of the 3-km control member compared to the 1.5-km control member was complemented by probability forecasting.

Characteristics of Bovine Teeth Whitening in Accordance with Gas Environments of Atmospheric Pressure Nonthermal Plasma Jet

  • Sim, Geon Bo;Kim, Yong Hee;Kwon, Jae Sung;Park, Daehoon;Hong, Seok Jun;Kim, Young Seok;Lee, Jae Lyun;Lee, Gwang Jin;Lim, Hwan Uk;Kim, Kyung Nam;Jung, Gye Dong;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.250.2-250.2
    • /
    • 2014
  • Currently, teeth whitening method which is applicable to dental surgery is that physician expertises give medical treatment to teeth directly dealed with a high concentration of hydrogen peroxide and carbamide peroxide. If hydrogen peroxide concentration is too high for treatment of maximized teeth whitening effect [1], it is harmful to the human body [2]. To the maximum effective and no harmful teeth whitening effect in a short period of time at home, we have observed the whitening effect using carbamide peroxide (15%) and a low-temperature atmospheric pressure plasma jet which is regulated by the Food and Drug Administration. The gas supplied conditions of the non-thermal atmospheric pressure plasma jet was with the humidified (0.6%) gas in nitrogen or air at gas flow rate of 1000 sccm. Also, the measurement of chemical species from the jet was carried out using the optical emission spectroscopy (OES), the evidence of increased reactive oxygen species compared to non-humidified plasma jet. We have found that the whitening effect of the plasma is very excellent through this experiment, when bovine teeth are treated in carbamide peroxide (15%) and water vapor (0.2 to 1%). The brightness of whitening teeth was increased up to 2 times longer in the CIE chromaticity coordinates. The colorimetric spectrometer (CM-3500d) can measure color degree of whitening effect.

  • PDF