• Title/Summary/Keyword: AtERF71/HRE2

Search Result 2, Processing Time 0.021 seconds

Analysis of Putative Downstream Genes of Arabidopsis AtERF71/HRE2 Transcription Factor using a Microarray (마이크로어레이를 이용한 애기장대 AtERF71/HRE2 전사인자의 하위 유전자 분석)

  • Seok, Hye-Yeon;Lee, Sun-Young;Woo, Dong-Hyuk;Park, Hee-Yeon;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1359-1370
    • /
    • 2012
  • Arabidopsis AtERF71/HRE2, a transcription activator, is located in the nucleus and is involved in the signal transduction of low oxygen and osmotic stresses. In this study, microarray analysis using AtERF71/HRE2-overexpressing transgenic plants was performed to identify genes downstream of AtERF71/HRE2. A total of 161 different genes as well as AtERF71/HRE2 showed more than a twofold higher expression in AtERF71/HRE2-overexpressing transgenic plants compared with wild-type plants. Among the 161 genes, 24 genes were transcriptional regulators, such as transcription factors and DNA-binding proteins, based on gene ontology annotations, suggesting that AtERF71/HRE2 is an upstream transcription factor that regulates the activities of various downstream genes via these transcription regulators. RT-PCR analysis of 15 genes selected out of the 161 genes showed higher expression in AtERF71/HRE2-overexpressing transgenic plants, validating the microarray data. On the basis of Genevestigator database analysis, 51 genes among the 161 genes were highly expressed under low oxygen and/or osmotic stresses. RT-PCR analysis showed that the expression levels of three genes among the selected 15 genes increased under low oxygen stress and another three genes increased under high salt stress, suggesting that these genes might be downstream genes of AtERF71/HRE2 in low oxygen or high salt stress signal transduction. Microarray analysis results indicated that AtERF71/HRE2 might also be involved in the responses to other abiotic stresses and also in the regulation of plant developmental processes.

AtERF73/HRE1, an Arabidopsis AP2/ERF Transcription Factor Gene, Contains Hypoxia-responsive Cis-acting Elements in Its Promote (애기장대의 AP2/ERF 전사인자인 AtERF73/HRE1의 프로모터에 있어서 저산소 반응 cis-조절 요소의 분석)

  • Hye-Yeon Seok;Huong Thi Tran;Sun-Young Lee;Yong-Hwan Moon
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.34-42
    • /
    • 2023
  • In a signal transduction network, from the perception of stress signals to stress-responsive gene ex- pression, binding of various transcription factors to cis-acting elements in stress-responsive promoters coordinate the adaptation of plants to abiotic stresses. Among the AP2/ERF transcription factor family genes, group VII ERF genes, such as RAP2.12, RAP2.2, RAP2.3, AtERF73/HRE1, and AtERF71/ HRE2, are known to be involved in the response to hypoxia stress in Arabidopsis. In this study, we dissected the HRE1 promoter to identify hypoxia-responsive region(s). The 1,000 bp upstream promoter region of HRE1 showed increased promoter activity in Arabidopsis protoplasts and transgenic plants under hypoxia conditions. Analysis of the promoter deletion series of HRE1, including 1,000 bp, 800 bp, 600 bp, 400 bp, 200 bp, 100 bp, and 50 bp upstream promoter regions, using firefly luciferase and GUS as reporter genes indicated that the -200 to -100 region of the HRE1 promoter is responsible for the transcriptional activation of HRE1 in response to hypoxia. In addition, we identified two putative hypoxia-responsive cis-acting elements, the ERF-binding site and DOF-binding site, in the -200 to -100 region of the HRE1 promoter, suggesting that the expression of HRE1 might be regulated via the ERF transcription factor(s) and/or DOF transcription factor(s). Collectively, our results suggest that HRE1 contains hypoxia-responsive cis-acting elements in the -200 to -100 region of its promoter.