• Title/Summary/Keyword: Asynchronous MAC

Search Result 59, Processing Time 0.027 seconds

Design of Receiver-Initiated Asynchronous MAC Protocol for Energy-Efficiency in WSNs (전력 효율을 위한 수신자 기반 비동기 센서 MAC 프로토콜 설계)

  • Park, In-Hye;Lee, Hyung-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.12
    • /
    • pp.873-875
    • /
    • 2014
  • In this paper we describe an asynchronous MAC protocol with receiver-initiated duty cycling for energy-efficiency in wireless sensor networks(WSN). Legacy asynchronous MAC protocols, X-MAC and PW-MAC, has weaknesses which generates too many control packets and has data collision problem between multiple transmitters, respectively. Therefore, we propose a receiver-initiated asynchronous MAC protocol which generates control packets from transmitter to complement these disadvantages. Compared to the prior asynchronous duty cycling approaches of X-MAC and PW-MAC, the proposed protocol shows a improvement in energy-efficiency, throughput and latency from simulation results.

Transient Coordinator: a Collision Resolution Algorithm for Asynchronous MAC Protocols in Wireless Sensor Networks

  • Lee, Sang Hoon;Park, Byung Joon;Choi, Lynn
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3152-3165
    • /
    • 2012
  • Wireless sensor networks (WSN) often employ asynchronous MAC scheduling, which allows each sensor node to wake up independently without synchronizing with its neighbor nodes. However, this asynchronous scheduling may not deal with collisions due to hidden terminals effectively. Although most of the existing asynchronous protocols exploit a random back-off technique to resolve collisions, the random back-off cannot secure a receiver from potentially repetitive collisions and may lead to a substantial increase in the packet latency. In this paper, we propose a new collision resolution algorithm called Transient Coordinator (TC) for asynchronous WSN MAC protocols. TC resolves a collision on demand by ordering senders' transmissions when a receiver detects a collision. To coordinate the transmission sequence both the receiver and the collided senders perform handshaking to collect the information and to derive a collision-free transmission sequence, which enables each sender to exclusively access the channel. According to the simulation results, our scheme can improve the average per-node throughput by up to 19.4% while it also reduces unnecessary energy consumption due to repetitive collisions by as much as 91.1% compared to the conventional asynchronous MAC protocols. This demonstrates that TC is more efficient in terms of performance, resource utilization, and energy compared to the random back-off scheme in dealing with collisions for asynchronous WSN MAC scheduling.

RIX-MAC: An Energy-Efficient Receiver-Initiated Wakeup MAC Protocol for WSNs

  • Park, Inhye;Lee, Hyungkeun;Kang, Seokjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1604-1617
    • /
    • 2014
  • This paper proposes RIX-MAC (Receiver-Initiated X-MAC), a new energy-efficient MAC protocol based on an asynchronous duty cycling. RIX-MAC improves energy efficiency through utilizing short preambles and adopting the receiver-initiated approach, where RIX-MAC minimizes sender nodes' energy consumption by enabling transmitters to predict receiver nodes' wake-up times. It also reduces receiver nodes' energy consumption by decreasing the number of control frames. We use the network simulator to evaluate RIX-MAC's performance. Compared to the prior asynchronous duty cycling approaches of X-MAC and PW-MAC, the proposed protocol shows a remarkable improvement in energy-efficiency and end-to-end delay.

Asynchronous Traffic Multi-Hop Transmission Scheme for N-Screen Services in Indoor and Ship Area Networks (선박 및 실내 N-스크린 서비스를 위한 비동기 트래픽 멀티홉 전송 기술)

  • Hur, Kyeong;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.950-956
    • /
    • 2015
  • In this paper, a WiMedia Distributed-MAC (D-MAC) protocol is adopted for development of a seamless N-screen wireless service in Indoor and Ship Area Networks. Furthermore, to provide the OSMU (One Source Multi Use) N-screen service through P2P streaming in the seamless D-MAC protocol, a ATMT (Asynchronous Traffic Multi-hop Transmission) technology is proposed and analyzed. In this system, a WiMedia ATMT D-MAC bridge transmits control and managing information to various sensors and instruments, from a central integrated ship area network station. For this technology, a time slot allocation scheme for WiMedia asynchronous traffic and a multi-hop resource reservation scheme are combined to evaluate the performance of each scheme. From simulation results, the proposed ATMT scheme enhances performances in viewpoints of N-screen asynchronous data latency and throughput, compared to the conventional WiMedia D-MAC system.

Distributed Medium Access Control for N-Screen Multicast Services in Home Networks

  • Hur, Kyeong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.567-572
    • /
    • 2016
  • N-screen is an emerging technology to support multimedia multicasting, content sharing and content mobility. N-screen service providers should obtain the technology that provides the highest quality content seamlessly. Distributed nature of WiMedia distributed-MAC protocol can provide full mobility support, and achieves seamless medium access method in contrast to IEEE 802.15.3. So, in this paper, WiMedia distributed-MAC protocol is adopted and an asynchronous multicast transmission (AMT) technology is proposed to enhance performance of seamless N-screen wireless service based on distributed-MAC. The ACK frame transmissions are not required for multicast transmissions. By using this property in AMT, if a device is a multicast receiver, its reserved time slots can be reserved by the other devices with 1-hop distance. Furthermore, each N-screen device broadcasts and shares the information including an order in asynchronous traffic reservations to reduce conflicts in determining the transmission order of asynchronous N-screen packets. Therefore, AMT scheme expands the number of time slots available and throughputs for multicast and asynchronous traffic reservations when comparing with the distributed-MAC standard system. N-screen communications based on distributed-MAC with the proposed AMT shows a new framework for realizing N-screen wireless service with the full content mobility.

Receiver-Initiated MAC Protocol Using an Intermediate Node to Improve Performance (성능 향상을 위해 중간 노드를 이용한 개선된 수신자 주도의 MAC 프로토콜)

  • Kong, Joon-Ik;Lee, Jaeho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1423-1430
    • /
    • 2016
  • The MAC protocols, which are classified into synchronous and asynchronous MAC protocol in the wireless sensor network, have actively studied. Especially, the asynchronous MAC protocol needs to research on the algorithm synchronizing between nodes, since each node independently operates in its own duty cycle. Typically, Receiver-Initiated MAC protocol is the algorithm synchronizing particular nodes by using beacon immediately transmitted by each node when it wakes up. However, the sender consumes unnecessary energy because it blankly waits until receiving the receiver's beacon, even if it does not know when the receiver's beacon is transmitted. In this paper, we propose the MAC protocol which can improve the performance by selecting an optimal node between a sender and a receiver to overcome the disadvantages. The simulation results show that the proposed algorithm improves energy efficiency and decreases average delay time than the conventional algorithm.

Power Consumption Analysis of Asynchronous RIT mode MAC in Wi-SUN (Wi-SUN에서 비동기 RIT 모드 MAC의 전력소모 분석)

  • Dongwon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.23-28
    • /
    • 2023
  • In a wireless smart utility network communication system, an asynchronous low power MAC is standardized and used according to IEEE 802.15.4e. An asynchronous MAC called RIT (Receiver Initiated Transmission) has a characteristic in which delay time and power consumption are greatly affected by a check-in interval (RIT period). By waking up from sleep every check-in interval and checking whether there is data to be received, power consumption in the receiving end can be drastically reduced, but power consumption in the transmitting end occurs due to an excessive wakeup sequence. If an excessive wake-up sequence is reduced by shortening the check interval, power consumption of the receiving end increases due to too frequent wake-up. In the RIT asynchronous MAC technique, power consumption performance according to traffic load and operation of check-in interval is analyzed and applied to Wi-SUN construction.

Analytic Model for Performance Evaluation of Asynchronous MAC Protocol in Wireless Sensor Networks (무선 센서네트워크에서 비동기식 MAC 프로토콜의 성능분석을 위한 분석적 모델)

  • Jung, Sung-Hwan;Kwon, Tae-Kyoung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.4
    • /
    • pp.248-256
    • /
    • 2009
  • In this paper, under saturated traffic condition in a single-hop wireless sensor network, we present an analytic model that evaluates the performance of asynchronous MAC protocol which uses a preamble technique. Our model considers the impact of several important factors such as sleep cycle, the backoff mechanism and the number of contending nodes. After obtaining the cumulative backoff time of a sending node and expected delay of a receiving node, an iterative algorithm is presented for calculating the performance measures such as expected energy consumption usage per packet and latency. Simulation results show that the proposed analytic model can accurately estimate the performance measures under saturated traffic conditions.

A Study on Asynchronous MAC Protocol with Dynamic Preamble Length in Wireless Sensor Networks (WSN에서 프리앰블 다이나믹을 이용한 비동기 MAC 프로토콜 연구)

  • Han, Hyeon-Ho;Hong, Yeong-Pyo;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3563-3570
    • /
    • 2010
  • MAC protocol has been studied for reducing energy consumption in wireless sensor networks. The overhearing and idle In the existing asynchronous MAC Protocol will occur due to unnecessary energy consumption. In this paper, to solve these problems, the Preamble to change the structure of the destination address, the Preamble of the end times, the data including the length of the Preamble and Data Overhearing reduce the length of the Check Interval Data generated according to the presence of the Dynamic Value dynamically adjustable by changing the DPL (Dynamic Preamble Length)-MAC protocol was proposed. Moreover, the existing asynchronous MAC protocol of wireless sensor networks and DPL-MAC protocol proposed in this paper to simulate the energy consumption and latency were assessed in terms of comparative analysis.

Performance of Asynchronous MAC with an Efficient Preamble Sampling Scheme for Wireless Sensor Networks (무선 센서 네트워크를 위한 효율적인 프리엠블 샘플링 기법을 사용하는 비동기 MAC의 성능 분석)

  • Byun, Kang-Ho;Yoon, Chong-Ho;Kim, Se-Han
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.70-77
    • /
    • 2008
  • On the wireless sensor network MAC protocols, one of main issues is energy enciency. Since several asynchronous wireless sensor network MAC protocols with short preamble sampling scheme can be operated without setting the timing synchronization among neighbor nodes, it consumes a little energy for maintaining protocols. However, each node encounters either preamble or data overhearing problem, because each node wakes up in a different time and must check whether the frame is being sent to itself or not. To solve this overhearing problem, we newly propose B-MAC++ that can reduce the overhearing energy consumption by using short preambles with destination address and payload length. from simulation results, we show that the proposed B-MAC++ has advantageous in terms of power consumption efficiency over other asynchronous wireless sensor network MAC protocols.