• Title/Summary/Keyword: Asymmetrical qPCR

Search Result 1, Processing Time 0.016 seconds

Application of a Peptide Nucleic Acid-Based Asymmetric Real-Time PCR Method for Rapid Detection of Vibrio cholerae (비브리오 콜레라 신속 검출을 위한 펩티드 핵산 기반 비대칭 real-time PCR 방법의 적용)

  • Kang, Mingyeong;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.117-124
    • /
    • 2019
  • Vibrio cholerae is a very important pathogenic bacterium that has to be monitored in seafood and ships' ballast water. Various methods have been developed to identify this bacterium, yet these methods are time-consuming and have limitations for their sensitivity to detect contamination. The purpose of the present study was to develop a robust and reliable method for identifying V. cholerae. Peptide nucleic acid (PNA) probes were developed to use for PNA-based asymmetrical real-time PCR techniques. The toxigenic Cholera enterotoxin subunit B (ctxB) gene was selected as a target for detecting V. cholerae and the gene was synthesized as a positive template for conventional and real-time PCR. Real-time PCR primers and PNA probes were designed and standard curves were produced for the quantitative analysis. The selected PNA probes reacted specifically to V. cholerae without any ambiguity, even among closely related species, and the detection limit was 0.1 cfu/100 mL. Taken together, the PNA probes and asymmetrical qPCR methods developed in this present study could contribute to the rapid, accurate monitoring of V. cholerae in marine environments, and as well as in seafood and ships' ballast waters.