• Title/Summary/Keyword: Asymmetric ground plane

Search Result 13, Processing Time 0.023 seconds

Wide Band Monopole Antenna by Modified Ground of Coplanar Waveguide (CPW 급전의 접지면을 변형한 광대역 모노폴 안테나)

  • Lee, Hyeon-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.2
    • /
    • pp.53-55
    • /
    • 2011
  • The printed wide band monopole antenna having characteristics of dipole by modified coplanar wave guide(CPW) ground plane is presented. We are called a slot-arm printed monopole antenna and investigated the effect of the surface currents of the radiator on ground plane. The proposed antenna is treated as two asymmetric dipoles with the included angle of $90^{\circ}$ degrees which lie along Z-direction symmetrically. It is observed that the effect of the surface currents on the radiation patterns is similar to that of the corresponding dipole. The length and width of the ground plane correspond the radius and length of the dipole respectively. This approach is also valid to general printed monopole antennas. The simulation impedance bandwidth of the proposed antenna the range of 2.4 to 4.6 [GHz] for a voltage stand wave ratio (VSWR)${\leq}$2 and got pick gain of 6 [dBi]. So the proposed antenna is satisfied the requirement of the industry science medical (ISM) band operation.

A Switchable Circularly Polarized Microstrip Antenna using Asymmetric U-shaped Slotted Ground Structures (비대칭 U자형 슬롯 접지면을 이용한 편파변환 마이크로스트립 안테나)

  • Lee, Dong-Hyo;Yoon, Won-Sang;Han, Sang-Min;Pyo, Seong-Min;Kim, Young-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.85-91
    • /
    • 2010
  • In this paper, a new microstrip antenna using asymmetric U-shaped slotted ground is proposed for a switchable circular polarization sense. The proposed antenna is achieved a circularly polarization from orthogonal E-field distributions with 90 degree phase difference due to the asymmetrical U-shaped slot. Moreover, the circular polarization sense of the proposed antenna can be easily switchable with changing the symmetric plane of the U-shaped slots. As a result, the proposed antenna is implemented by two PIN diodes with two different bias condition for ON/OFF states. The measured axial ratios are about 1.5 dB without the dependence of the polarization sense and 3-dB axial ratio bandwidth are achieved 29 MHz with respect to about 1.2 % at 2.46 GHz operating frequency.

Miniaturized CPW-fed Folded Slot Antenna (소형화된 CPW 급전 폴디드 슬롯 안테나)

  • Woo, Hee-Sung;Shin, Dong-Gi;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.142-147
    • /
    • 2020
  • In the present study, we proposed newly a CPW-fed miniaturized folded-slot antenna with open ended slot for WCDMA (1.92 ~ 2.17 GHz) band. Open-ended slots and asymmetric ground plane are used for a miniaturization of the antenna, and the proposed antenna was designed and fabricated on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of 35×70 ㎟. The measured impedance bandwidths (|S11| ≤ -10 dB) of fabricated antenna is about 400 MHz (1.86 ~ 2.26 GHz), which sufficiently satisfied interested band. Furthermore, the gain of antenna is 2 dBi and this antenna shows a similar radiation patterns of the dipole antenna. Therefore, it is expected to be used usefully in wireless and mobile communication device.

Wide-Bandwidth Wilkinson Power Divider for Three-Way Output Ports Integrated with Defected Ground Structure

  • Sreyrong Chhit;Jae Bok Lee;Dal Ahn;Youna Jang
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.14-22
    • /
    • 2024
  • This study presents the design of a Wilkinson power divider for three-way output ports (WPD3OP), which incorporates a defected ground structure (DGS). An asymmetric power divider is integrated into the output ports of the conventional Wilkinson power divider (WPD), establishing a three-way output port configuration. The DGS introduces periodic or irregular patterns into the ground plane to suppress unwanted electromagnetic wave propagation, and its incorporation can enhance the performance of the power divider, in terms of the power-division ratio, isolation, and bandwidth, by reducing spurious resonances. The proposed design algorithm for an asymmetric power divider for three-way output ports is analyzed via circuit simulations using High-Frequency Simulation Software (HFSS). The results verify the validity of the proposed method. The analysis of the WPD3OP integrated with DGS certifies the achievement of a center frequency of 2 GHz. This confirmation is supported by schematic ideal design simulation results and measurements encompassing insertion losses, return losses, and isolation.

Analysis of a T-Shaped UWB Printed Monopole Antenna Using Surface Currents (표면 전류 분포를 이용한 T자형 UWB 평면형 모노폴 안테나 해석)

  • Lee Dong-Hyun;Park Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.883-892
    • /
    • 2005
  • We propose a T-shaped UWB printed monopole antenna and investigate the effect of the surface currents of the radiator and ground plane. The measured impedance bandwidth of the antenna covers the range of 3.1 to 11 GHz for a VSWR$\le$2, which satisfies the requirement of the UWB operation. From the analysis of the surface currents, the proposed antenna can be treated as two asymmetric dipoles with the included angle of 90 degrees which lie along z-direction symmetrically. It is observed that the effect of the surface currents on the radiation patterns is similar to that of the corresponding dipole. The length and width of the found plane correspond the radius and length of the dipole respectively. This approach is also valid to general printed monopole antennas. Finally, we included an antenna example having resonance at a lower frequency by tapering the edges of the ground plane and another example having a bandstop characteristic by inserting an inverted-U slot on the radiator, and explain those antennas using the surface currents.

Design for Triple Band Patch Array Antenna with High Detection Ability

  • Kim, In-Hwan;Min, Kyeong-Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.214-223
    • /
    • 2013
  • This paper proposes a theoretical analysis of hidden device detection and a design of multiband circular polarization patch array antenna for non-linear junction detector system application. A good axial ratio of circular polarization patch antenna is realized by a new approach that employs inclined slots, two rectangular grooves and a truncated ground for the conventional antenna. A good axial ratio of the 1.5 dB lower is measured by having an asymmetric gap distance between the ground planes of the coplanar waveguide feeding structure. The common ground plane of the linear array has an optimum trapezoidal slot array to reduce the mutual coupling without increasing the distance between the radiators. The higher gain of about 1 dBi is realized by using the novel common ground structure. The measured return loss, gain, and axial ratio of the proposed single radiator, as well as the proposed array antennas, showed a good agreement with the simulated results.

Flow structures around a three-dimensional rectangular body with ground effect

  • Gurlek, Cahit;Sahin, Besir;Ozalp, Coskun;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.11 no.5
    • /
    • pp.345-359
    • /
    • 2008
  • An experimental investigation of the flow over the rectangular body located in close proximity to a ground board was reported using the particle image velocimetry (PIV) technique. The present experiments were conducted in a closed-loop open surface water channel with the Reynolds number, $Re_H=1.2{\times}10^4$ based on the model height. In addition to the PIV measurements, flow visualization studies were also carried out. The PIV technique provided instantaneous and time-averaged velocity vectors map, vorticity contours, streamline topology and turbulent quantities at various locations in the near wake. In the vertical symmetry plane, the upperbody flow is separated from the sharp top leading edge of the model and formed a large reverse flow region on the upper surface of the model. The flow structure downstream of the model has asymmetric double vortices. In the horizontal symmetry plane, identical separated flow regions occur on both vertical side walls and a pair of primary recirculatory bubbles dominates the wake region.

A compact Monopole Antenna Design for WLAN/WiMAX Triple Band Operations (WLAN/WiMAX 삼중대역에서 동작하는 모노폴 안테나의 설계)

  • Yoon, Joong-Han;Jang, Yeon-Gil;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.465-473
    • /
    • 2012
  • In this study, a novel dual band planar monopole antenna for wireless local area network (WLAN)/ Worldwide Interoperability of Microwave Access (WiMAX) application was designed, fabricated, and measured. The proposed antenna consists of two hook shaped strips, an asymmetric ground plane, and a rectangular slit in the ground plane. Acceptable agreements between the measured and simulated results are achieved. Numerical and experimental results demonstrate that the proposed antenna satisfies the 10 dB impedance bandwidth requirement while covering the WLAN and WiMAX bands simultaneously. This paper also presents and discusses the 2D radiation patterns and 3D gains according to the results of the experiment that was conducted.

Compact Mobile Quad-Band Slot Antenna Design for GPS L1, WiMAX, and WLAN Applications

  • Piao, Haiyan;Jin, Yunnan;Tak, Jinpil;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.57-64
    • /
    • 2017
  • In this paper, an asymmetric compact multiband slot antenna is proposed for global positioning system (GPS), worldwide interoperability for microwave access (WiMAX), and wireless area network (WLAN) applications. The top plane, a ground is composed of a rectangular slot with a trapezoidal-like stub, an inverted U-shaped slot at the right side of the rectangular slot, an inverted L-shaped slot at the left side of the rectangular slot, and three stubs. The proposed antenna is fed by an asymmetric cross-parasitic strip on the bottom plane. By properly designing the slots and stubs, four resonant frequency bands are achieved with -10 dB reflection coefficient bandwidths of 50 MHz, 400 MHz, 390 MHz, and 830 MHz in the 1.57 GHz GPS band, 2.4 GHz WLAN band, 3.5 GHz WiMAX band, and 5.5 GHz WLAN bands, respectively. The antenna has a total compact size of $13mm{\times}32mm{\times}0.8mm$. Simulated and measured results indicate that the proposed antenna has sufficient bandwidth and good radiation performance in each band.