• Title/Summary/Keyword: Asymmetric ground

Search Result 99, Processing Time 0.02 seconds

Earthquake Response Analysis for Seismic Isolation System of Single Layer Lattice Domes With 300m Span (300m 단층 래티스 돔의 면진 장치에 대한 지진 반응 해석)

  • Park, Kang-Geun;Chung, Mi-Ja;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.105-116
    • /
    • 2018
  • The objective of this study is to investigate the response reducing effect of a seismic isolation system installed between 300m dome and supports under both horizontal and vertical seismic ground motion. The time history analysis is performed to investigate the dynamic behavior of single layer lattice domes with and without a lead rubber bearing seismic isolation system. In order to ensure the seismic performance of lattice domes against strong earthquakes, it is important to investigate the mechanical characteristics of dynamic response. Horizontal and vertical seismic ground motions cause a large asymmetric vertical response of large span domes. One of the most effective methods to reduce the dynamic response is to install a seismic isolation system for observing seismic ground motion at the base of the dome. This paper discusses the dynamic response characteristics of 300m single layer lattice domes supported on a lead rubber seismic isolation device under horizontal and vertical seismic ground motions.

Development of the Growth and Wavelength Control Technique of In As Quantum Dots for 1.3 μm Optical Communication Devices (1.3 μm 광통신용 소자를 위한 InAs 양자점 성장 및 파장조절기술 개발)

  • Park, Ho-Jin;Kim, Do-Yeob;Kim, Goon-Sik;Kim, Jong-Ho;Ryu, H.H.;Jeon, Min-Hyon;Leem, Jae-Young
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.390-395
    • /
    • 2007
  • We systematically investigated the effects of InAs coverage variation, two-step annealing and an asymmetric InGaAs quantum well (QW) on the structural and optical characteristics of InAs quantum dots (QDs) by using atomic force microscopy (AFM), transmission electron microscopy (TEM) and photoluminescence (PL) measurement. The transition of size distribution of InAs QDs from bimodal to multi-modal was noticeably observed with increasing InAs coverage. By means of two-step annealing, it is found that significant narrowing of the luminescence linewidth (from 132 to 31 meV) from the InAs QDs occurs together with about 150 meV blueshift, compared to as-grown InAs QDs. Finally, the InAs QDs emitting at longer wavelength of $1.3\;{\mu}m$ with narrow linewidth were grown by an asymmetric InGaAs QW. The excited-state transition for the InAs QDs with an asymmetric InGaAs QW was not noticeably observed due to the large energy-level spacing between the ground states and the first excited states. The InAs QDs with an asymmetric InGaAs QW will be promising for the device applications such as $1.3\;{\mu}m$ optical-fiber communication.

A Study on Improvement of Aircraft Handling Quality for Asymmetric Loading Configuration (비대칭 무장 형상의 조종성 개선에 관한 연구)

  • Kim, Chong-Sup;Bae, Myung-Whan;Hwang, Byung-Moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.106-112
    • /
    • 2005
  • Modern versions of supersonic jet fighter aircraft have several different weapon loading configuration to support air-to-air combat and air-to-ground delivery of weapon modes. These various aircraft loading conditions could result in asymmetric configurations to the aircraft once delivered. These asymmetric configurations could result in decreased handling qualities for the pilot maneuvering, stability, control issues and aerodynamic performance of the aircraft. In order to eliminate or decrease these adverse impacts on the pilot's ability, development of T-50 flight control law attempts to control the aircraft in both longitudinal and lateral-directional axes. Especially, the design of the lateral-directional roll axis control laws, utilizing a simple roll rate feedback structure and gains such as F-16, is developed for the T-50 aircraft to meet the aircraft's design requirements. Consequently, it is found that the improved control law decreases the roll-off phenomenon in lateral axes during pitch maneuver.

Investigation of Earth Pressure on Vertical Shaft by Field Monitoring (현장계측을 통한 원형 수직구 작용하중 분석)

  • Shin, Youngwan;Moon, Kyoungsun;Kang, Hyutaek;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.63-76
    • /
    • 2008
  • This research was carried in order to improve design technique for the vertical shaft of which design guide has not been proposed clearly. The deformation tendency of vertical shaft and distribution of the earth pressure around shaft were reviewed with both of theoretical earth pressure distribution suggested in design criteria and measured data which had been gained from 2 constructing shaft. The distribution of earth pressure applied on the vertical shaft was similar with the result of previous theory for the earth pressure proposed by Shin (2007). Moreover it was observed that asymmetric deformation and earth pressure around vertical shaft were caused by inhomogeneity and anisotropy of the ground. The asymmetric earth pressure ratio ($R_p$) in soil and weathered rock were divergent according to the shape ratio. In addition, it is more reasonable that the value of asymmetric earth pressure ratio ($R_p$) is considered less than 0.35 in the case of constructing shaft under rock.

  • PDF

Analysis of seismic mid-column pounding between low rise buildings with unequal heights

  • Jiang, Shan;Zhai, Changhai;Zhang, Chunwei;Ning, Ning
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.395-402
    • /
    • 2018
  • Floor location of adjacent buildings may be different in terms of height elevation, and thus, the slab may hit on the columns of adjacent insufficiently separated buildings during severe ground motions. Such impacts, often referred to as mid-column pounding, can be catastrophic. Substantial pounding damage or even total collapse of structures was often observed in large amount of adjacent low rise buildings. The research on the mid-column pounding between low rise buildings is in urgency need. In present study, the responses of two adjacent low rise buildings with unequal heights and different dynamic properties have been analyzed. Parametric studies have also been conducted to assess the influence of story height difference, gap distance and input direction of ground motion on the effect of structural pounding response. Another emphasis of this study is to analyze the near-fault effect, which is important for the structures located in the near-fault area. The analysis results show that collisions exhibit significant influence on the local shear force response of the column suffering impact. Because of asymmetric configuration of systems, the structural seismic behavior is distinct by varying the incident directions of the ground motions. Results also show that near-fault earthquakes induced ground motions can cause more significant effect on the pounding responses.

The Relationship between Grip Strength and Ground Reaction Force by Change of Position when Lifting Tasks (들기 작업할 때 자세의 변화에 따른 악력과 지면 반발력의 상관관계)

  • Jung, Sang-Yong;Gang, Jin-Woo;Koo, Jung-Wan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.41-47
    • /
    • 2009
  • The purpose of this study, during the lifting task was researching the difference and a relationship between the ground reaction force and the grip strength by change of position. After grip strength has measured in symmetry position and asymmetry position at 45cm and 75cm of height of hand, ground reaction force was measured by same attitude lifting wooden box. We analyzed the difference of grip strength and ground reaction force in each position change. The results of grip strength, the grip strength of both hand were significant difference that in study subject symmetry and asymmetry position (p<0.01). The results of symmetry lifting task, the study subjects was significant difference of the ground reaction force difference by height (p<0.05). Asymmetry lifting task was significant difference of ground reaction force difference by direction of rotation was changed (p<0.01). The result of it will rotate with non-dominant hand side of lifting tasks from height 75cm where it easily maintains a balance possibility and decreasing the load of the hand. Therefore, from the workshop in the work people, it will be between the height 75cm and non-dominant hand side of trunk rotatory direction in the lifting tasks. Future study is necessary researched about the change of grip strength when the height of the hand is higher, and the difference of the ground reaction force when the change of weight.

Seismic responses of transmission tower-line system under coupled horizontal and tilt ground motion

  • Wei, Wenhui;Hu, Ying;Wang, Hao;Pi, YongLin
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.635-647
    • /
    • 2019
  • Tests and theoretical studies for seismic responses of a transmission tower-line system under coupled horizontal and tilt (CHT) ground motion were conducted. The method of obtaining the tilt component from seismic motion was based on comparisons from the Fourier spectrum of uncorrected seismic waves. The collected data were then applied in testing and theoretical analysis. Taking an actual transmission tower-line system as the prototype, shaking table tests of the scale model of a single transmission tower and towers-line systems under horizontal, tilt, and CHT ground motions were carried out. Dynamic equations under CHT ground motion were also derived. The additional P-∆ effect caused by tilt motion was considered as an equivalent horizontal lateral force, and it was added into the equations as the excitation. Test results were compared with the theoretical analysis and indicated some useful conclusions. First, the shaking table test results are consistent with the theoretical analysis from improved dynamic equations and proved its correctness. Second, the tilt component of ground motion has great influence on the seismic response of the transmission tower-line system, and the additional P-∆effect caused by the foundation tilt, not only increases the seismic response of the transmission tower-line system, but also leads to a remarkable asymmetric displacement effect. Third, for the tower-line system, transmission lines under ground motion weaken the horizontal displacement and acceleration responses of transmission towers. This weakening effect of transmission lines to the main structure, however, will be decreased with consideration of tilt component.

Analysis of a T-Shaped UWB Printed Monopole Antenna Using Surface Currents (표면 전류 분포를 이용한 T자형 UWB 평면형 모노폴 안테나 해석)

  • Lee Dong-Hyun;Park Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.883-892
    • /
    • 2005
  • We propose a T-shaped UWB printed monopole antenna and investigate the effect of the surface currents of the radiator and ground plane. The measured impedance bandwidth of the antenna covers the range of 3.1 to 11 GHz for a VSWR$\le$2, which satisfies the requirement of the UWB operation. From the analysis of the surface currents, the proposed antenna can be treated as two asymmetric dipoles with the included angle of 90 degrees which lie along z-direction symmetrically. It is observed that the effect of the surface currents on the radiation patterns is similar to that of the corresponding dipole. The length and width of the found plane correspond the radius and length of the dipole respectively. This approach is also valid to general printed monopole antennas. Finally, we included an antenna example having resonance at a lower frequency by tapering the edges of the ground plane and another example having a bandstop characteristic by inserting an inverted-U slot on the radiator, and explain those antennas using the surface currents.

Miniaturized CPW-fed Folded Slot Antenna (소형화된 CPW 급전 폴디드 슬롯 안테나)

  • Woo, Hee-Sung;Shin, Dong-Gi;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.142-147
    • /
    • 2020
  • In the present study, we proposed newly a CPW-fed miniaturized folded-slot antenna with open ended slot for WCDMA (1.92 ~ 2.17 GHz) band. Open-ended slots and asymmetric ground plane are used for a miniaturization of the antenna, and the proposed antenna was designed and fabricated on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of 35×70 ㎟. The measured impedance bandwidths (|S11| ≤ -10 dB) of fabricated antenna is about 400 MHz (1.86 ~ 2.26 GHz), which sufficiently satisfied interested band. Furthermore, the gain of antenna is 2 dBi and this antenna shows a similar radiation patterns of the dipole antenna. Therefore, it is expected to be used usefully in wireless and mobile communication device.