• Title/Summary/Keyword: Asymmetric Vibration

Search Result 143, Processing Time 0.024 seconds

Multi-Objective Optimal Distributions of Viscous Dampers for Vibration Control of Adjacent Twin Structures (인접한 쌍둥이 구조물의 진동제어를 위한 점성 감쇠기의 다목적 최적 분포)

  • Ryu, Seonho;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.61-67
    • /
    • 2018
  • This study proposes a new vibration control approach for adjacent twin structures, which is termed as viscous damper asymmetric coupling system in this paper. The proposed system takes a concept that the diagonal bracing viscous dampers are asymmetrically distributed in two buildings to break the behavior symmetry of the twin buildings and then the coupling viscous damper is additionally installed at the top floor of the two buildings to couple both buildings and interactively transfer the asymmetric behavior-caused damping forces into both buildings. These asymmetric damping distributions and interacting damping forces of the connection damper efficiently suppress the overall vibration of the damper-coupled adjacent twin buildings efficiently. Genetic algorithm (GA) based multi-objective optimization technique is adopted for optimal design of the proposed system. In the numerical example of adjacent twin 10-story building structures, the conventional control approach, that is, uniform damping distribution system (UDS) is also taken into account for comparison purpose. The optimization results verify that the proposed system either can improve the control performance over the UDS with the same damping capacity, or can save the damping capacity significantly while maintaining the similar level of control performance to the UDS.

Enhancing Robustness of Floor Vibration Control by Using Asymmetric Tuned Mass Damper (비대칭 동조질량감쇠기를 활용한 바닥진동제어의 강건성 향상 방안)

  • Ko, A Ra;Lee, Cheol Ho;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.177-189
    • /
    • 2014
  • When floor vibration problems occur in existing buildings, TMD (tuned mass damper) can be a viable alternative to resolving the problem. Only when TMD has been exactly tuned to the natural frequency of the floor, it can control the vibration as intended in design. However, TMD gets inefficient in the situation where the natural frequency changes as a result of the uncontrollable variation of the floor mass weight. This physical phenomenon is often called as TMD-off-tuning. This study proposes asymmetric TMD for enhancing the robustness of floor vibration control against uncertain natural frequencies. The proposed TMD features two asymmetric linear springs such that the floor vibrational energy can be dissipated through both the translational and rotational motion. An easy-to-use graphical optimization method was developed in this study. The asymmetric TMD proposed outperformed in vibration control by 28% compared to that of conventional TMD. The robustness of asymmetric TMD of this study was two times higher than that of conventional TMD.

Videostrobokymographic Analysis of the Benign Vocal Folds Lesions (양성 성대 질환에서의 Videostrobokymography 소견)

  • 김동영;성명훈;김광현;최승호;왕수건
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.13 no.1
    • /
    • pp.5-17
    • /
    • 2002
  • Objectives : Videostrobokymography(VSK) has been recently developed and reported by Sung et at. We aimed to analyze vibratory patterns and objective parameters in various benign vocal fold lesions using VSK, and examine the efficacy of VSK in clinical application. Materials and Methods : Using VSK, we analyzed the vibration pattern of normal vocal fold and various benign lesions, such as nodules, polyps, cysts, Reinke's edema and unilateral vocal fold paralysis. We also calculated objective parameters, open quotient and asymmetric index, and compared them with mean values of parameters in normal controls. Results : In nodules, polyps, and cysts, the open quotient on the site of the lesion was similar to the mean value in normal controls, however, on the other part of the vocal folds it was much larger than normal mean value. In Reinke's edema, irregular and asymmetric vibration was observed. The posterior portion of the vocal folds showed larger open quotients than the anterior portion. In the unilateral vocal fold paralysis, irregular vocal folds vibration and incomplete closure of the vocal folds were documented. Much larger asymmetric indices were calculated in the unilateral vocal fold paralysis than in normal controls and other lesions. The asymmetric index could be a good quantitative parameter of vibration from a patient with vocal fold paralysis. Conclusion : This study demonstrated that VSK could generate clear quantitative documentations of fine vibrations of vocal folds in many different benign lesions. VSK has a potential as an effective tool for quantitative analysis of vibratory patterns of the vocal folds iii clinical settings.

  • PDF

Design and Vibration Reduction Method of Sub-Resonance in Asymmetric Type Optical Pick-up Actuator (FP코일을 이용한 비대칭형 광픽업 액츄에이터의 설계 및 부공진의 진동저감 대책)

  • 정호섭;오관영;유익형
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.160-165
    • /
    • 1998
  • The sub-resonance modes can be easily excited by the assembling tolerance in the asymmetric type optical pick-up actuators, compared with the symmetric type. In this paper, we propose the novel method for reducing the vibration due to the sub-resonance modes where undesirable modes can be decreased by adding the damping, which can be achieved by increasing the flexibility of holder PCB, against to the sub-resonance modes. Using the finite element method, the change of mode shapes is investigated as the shape of holder PCB is modified. Experimental results support that the proposed method reduces remarkably the vibration of sub-resonance modes of the optical pick-up actuator.

  • PDF

Effect of rigid connection to an asymmetric building on the random seismic response

  • Taleshian, Hamed Ahmadi;Roshan, Alireza Mirzagoltabar;Amiri, Javad Vaseghi
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.183-200
    • /
    • 2020
  • Connection of adjacent buildings with stiff links is an efficient approach for seismic pounding mitigation. However, use of highly rigid links might alter the torsional response in asymmetric plans and although this was mentioned in the literature, no quantitative study has been done before to investigate the condition numerically. In this paper, the effect of rigid coupling on the elastic lateral-torsional response of two adjacent one-story column-type buildings has been studied by comparison to uncoupled structures. Three cases are considered, including two similar asymmetric structures, two adjacent asymmetric structures with different dynamic properties and a symmetric system adjacent to an adjacent asymmetric one. After an acceptable validation against the actual earthquake, the traditional random vibration method has been utilized for dynamic analysis under Ideal white noise input. Results demonstrate that rigid coupling may increase or decrease the rotational response, depending on eccentricities, torsional-to-lateral stiffness ratios and relative uncoupled lateral stiffness of adjacent buildings. Results are also discussed for the case of using identical cross section for all columns supporting eachplan. In contrast to symmetric systems, base shear increase in the stiffer building may be avoided when the buildings lateral stiffness ratio is less than 2. However, the eccentricity increases the rotation of the plans for high rotational stiffness of the buildings.

Flexural Vibration Analysis of a Sandwich Beam Specimen with a Partially Inserted Viscoelastic Layer

  • Park, Jin-Tack;Park, Nak-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.347-356
    • /
    • 2004
  • The flexural vibration characteristics of a sandwich beam system with a partially inserted viscoelastic layer were quantitatively studied using the finite element analysis in combination with the sine-sweep experiment. Asymmetric mode shapes of the flexural vibration were visualized by holographic interferometry, which agreed with those obtained by the finite element simulation. Effects of the length and the thickness of the partial viscoelastic layer on the system loss factor (η$\_$s/) and resonant frequency (f$\_$r/) were significantly large for both the symmetric and asymmetric modes of the beam system.

Dynamic Behavior Analysis for HDD Spindle Motors with Rotor Eccentricity (HDD 스핀들 구동용 BLDC 전동기의 편심을 고려한 동적 거동 해석)

  • 김태종;김경태;황상문
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.977-984
    • /
    • 2000
  • Vibration of disk drive spindle is one of the major limiting factors in achieving higher track densities in hard disk drives. Vibration of a BLDC motor is a coupled phenomenon between mechanical characteristics and magnetic origins through the motor air-gap. In this paper, radial magnetic forces for symmetric and asymmetric BLDC motor are calculated with respect to the various rotor eccentricity using analytic method. Based on the results of the radial magnetic forces, transient whirl responses of the spindle motor are analyzed using finite element and transfer matrices. Results show that an asymmetric motor has a worse effects on unbalanced magnetic forces and vibration when mechanical and magnetic coupling exists.

  • PDF

Ambient vibration tests on a 19 - story asymmetric steel building

  • Shakib, H.;Parsaeifard, N.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • Ambient vibration tests were carried out to evaluate the dynamic properties of an asymmetric steel building with semi-rigid connections. The test case has many non-structural elements, constructed in the city of Tehran (Iran). The tests were conducted to obtain natural frequencies, mode shapes and damping ratio of the structure and then Fourier transform were used to analyze the velocity records obtained from the tests. The first and second natural periods of the building were obtained as 1.37 s and 1.28 s through the test and damping ratio for the first mode was calculated as 0.047. However, Natural periods obtained from finite element model have higher values from those gained from ambient vibration. Then the model was calibrated by modeling of the in-fill masonry panels at their exact locations and considering the boundary conditions by modeling two blocks near the block No. 3, but the differences were existed. These differences may be due to some hidden stiffness of nonstructural elements in the low range of elastic behavior, showing the structure stiffer than it is in reality.

Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets

  • Xiaojun Wu
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.141-153
    • /
    • 2023
  • The main objective of this paper is to develop the finite element study on the nonlinear free vibration of functionally graded nanocomposite spherical shells reinforced with graphene platelets under the first-order shear deformation shell theory and von Kármán nonlinear kinematic relations. The governing equations are presented by introducing the full asymmetric nonlinear strain-displacement relations followed by the constitutive relations and energy functional. The extended Halpin-Tsai model is utilized to specify the overall Young's modulus of the nanocomposite. Then, the finite element formulation is derived and the quadrilateral 8-node shell element is implemented for finite element discretization. The nonlinear sets of dynamic equations are solved by the use of the harmonic balance technique and iterative method to find the nonlinear frequency response. Several numerical examples are represented to highlight the impact of involved factors on the large-amplitude vibration responses of nanocomposite spherical shells. One of the main findings is that for some geometrical and material parameters, the fundamental vibrational mode shape is asymmetric and the axisymmetric formulation cannot be appropriately employed to model the nonlinear dynamic behavior of nanocomposite spherical shells.