• Title/Summary/Keyword: Asymmetric Vibration

Search Result 143, Processing Time 0.022 seconds

Effect Analysis of Spacer Stiffness and Interval on Galloping of Power Transmission Lines (스페이서 강성과 간격이 송전선 갤러핑에 미치는 영향분석)

  • Oh, Yun-Ji;Sohn, Jeong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.52-58
    • /
    • 2019
  • Due to icing and snow, power transmission lines have asymmetric cross sections, and their motion becomes unstable. At this time, the vibration caused by the wind is called galloping. If galloping is continuous, short circuits or ground faults may occur. It is possible to prevent galloping by installing spacers between transmission lines. In this study, the transmission line is modeled as a mass-spring-damper system by using RecurDyn. To analyze the dynamic behavior of the transmission line, the damping coefficient is derived from the free vibration test of the transmission line and Rayleigh damping theory. The drag and lift coefficient for modeling the wind load are calculated from the flow analysis by using ANSYS Fluent. Galloping simulations according to spacer stiffness and interval are carried out. It is found that when the stiffness is 100 N/m and the interval around the support is dense, the galloping phenomenon is reduced the most.

Developments in composite construction and cellular beams

  • Lawson, R.M.;Hicks, S.J.
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.193-202
    • /
    • 2005
  • This paper describes recent developments in composite construction and their effect on codified design procedures in the UK. Areas of particular interest include: rules on shear connection, design of beams with web openings, serviceability limits, such as floor vibrations, and fire safe design. The design of cellular beams with regular circular openings now includes generalized rules for web-post buckling, and for the development of in-plane moment in the web-post for asymmetric sections. Closed solutions for the maximum shear force due to limits on web-post bending or buckling are presented. The fire resistance of cellular beams is also dependent on the temperature of the web-post, and for closely spaced openings. It is necessary to increase the thickness of fire protection to the web. For serviceability design of beams, deflection limits and natural frequency and response factor for vibration are presented. It may be necessary to use stricter limits for certain applications.

Characteristics Analysis on the Effects of Rotor Eccentricity in Squirrel-cage Induction Motor (회전자 편심을 고려한 농형 유도전동기의 특성해석)

  • Kim, Mi-Jung;Kim, Byong-Kuk;Jo, Won-Young;Cho, Yun-Hyun;Hwang, Don-Ha;Kang, Dong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.188-190
    • /
    • 2006
  • This paper describes the effects of air gap eccentricity in induction machines. Asymmetric electro-magnetic force caused by the frictional worn bearing, rotor misalignment and unbalanced rotor etc. generates an asymmetrical operation, vibration and electro-magnetic noise. The need for detection of these rotor eccentricities has pushed the development of monitoring methods with increasing sensitivity and noise immunity. In this paper, we focus on investigating the asymmetrical operation considering of unbalanced magnetic force in squirrel-cage induction motor with 380 [V], 7.5 [kW], 4P, 1,768 [rpm]. The effects of the rotor eccentricity, magnetic force are investigated by finite element method (FEM).

  • PDF

Design Program Development of the Leaf Spring for Suspension (현가장치용 겹판스프링의 설계프로그램 개발)

  • Choi, S.J.;Choi, Y.C.;Choi, J.C.;Kwon, H.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.20-32
    • /
    • 1995
  • Springs for vehicle suspension control the vibration of a car and influence on the ridability, safety, and life of a car. In the paper, the computer aided design program has been developed, which design the leaf spring shape from the given specifications using basic theory and the expert's knowledge, and the design results are checked by the analysis theory in order to increase the accuracy, and feed back to the design input. For the purpose of easy use, this program consists of pull-down menu and interactive input mode. To prove the effectiveness of this program. two springs, of which one is symmetric, other asymmetric, are designed and analyzed, and the outputs are compared to the experiments. Considering the tolerance of the given specifications, the results are good.

  • PDF

Direct implementation of stochastic linearization for SDOF systems with general hysteresis

  • Dobson, S.;Noori, M.;Hou, Z.;Dimentberg, M.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.473-484
    • /
    • 1998
  • The first and second moments of response variables for SDOF systems with hysteretic nonlinearity are obtained by a direct linearization procedure. This adaptation in the implementation of well-known statistical linearization methods, provides concise, model-independent linearization coefficients that are well-suited for numerical solution. The method may be applied to systems which incorporate any hysteresis model governed by a differential constitutive equation, and may be used for zero or non-zero mean random vibration. The implementation eliminates the effort of analytically deriving specific linearization coefficients for new hysteresis models. In doing so, the procedure of stochastic analysis is made independent from the task of physical modeling of hysteretic systems. In this study, systems with three different hysteresis models are analyzed under various zero and non-zero mean Gaussian White noise inputs. Results are shown to be in agreement with previous linearization studies and Monte Carlo Simulation.

A Study on Dynamic and Acoustic Behavior of Beel Type Structure Using Finite Element Method (유한요소법을 이용한 종형 구조물의 동적거동 및 음향거동에 관한 연구)

  • 정석주
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.447-456
    • /
    • 1996
  • Dynamic characteristics of the bell-type structure including acoustic effects and transient dynamic problems were analyzed numerically. Natural frequencies, mode shapes and transient dynamic analysis used the finite element method with 3-D general shell element. Mode shapes and stress distributions of transient dynamic analysis were expressed by computer graphics. The method using this study was evaluated by comparision of theoretical results at reference papers(14), (15) and the experimental test using Fast Fourier Transform analyzer. Vibrational modes governing acoustic characteristics of the typical bell-type structure depended on the first flexural mode(4-0 mode) and the second flexural mode(6-0 mode). Asymmetric effects by Dangiwas, acoustic holes gave rise to beat frequencies, and the Dangjwa was found to be most effective. When impact load acted on the bell, stress concentration occured at the rim part of bell. It was found that the bell type structure should be designed thickly at the rim part in order to prevent impact load from stress concentration.

  • PDF

COMPARATIVE STUDY ON TURBULENCE MODELS FOR SUPERSONIC FLOW AT HIGH ANGLE OF ATTACK (초음속 고받음각 유동을 위한 난류 모델 비교 연구)

  • Park, M.Y.;Park, S.H.;Lee, J.W.;Byun, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.45-49
    • /
    • 2007
  • Asymmetric force and vibration caused by separation flow at high angle of attack affect the stability of supersonic missile. As a preliminary study we verified the effect of turbulence model through general 3-D slender body for the supersonic flow at high angle of attack. ${\kappa}-{\omega}$ Wilcox model, ${\kappa}-{\omega}$ Wilcox-Durbin+ model, ${\kappa}-{\omega}$ shear-stress transport model, and Spalart-Allmaras one equation model are used. Grid sensitivity test was performed with three different grid system. results show that all models are in good agreement with the experimental data.

  • PDF

Antisymmetric S-curve Profile for Fast and Vibrationless Motion (고속 저진동 운동을 위한 비대칭 S-커브 프로파일)

  • Rew Keun-Ho;Kwon Jeong-Tae;Park Kyoung-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1012-1017
    • /
    • 2006
  • By breaking the symmetry of the velocity profile in the S-curve, we developed a fast starting and smooth ending motion profile, named asymmetric S-curve(AS-curve). The problem for generating motion profile is formulated, and the algorithm for the AS-curve is derived and the flow chart of the AS-curve is illustrated. By various simulations, the derived algorithm is tested and shows the validity. This AS-curve can be applied to the high precision machines where fast and vibrationless motion is required in the near future.

A Study of Cogging Torque Reduction depending on Notch Position of Single Phase BLDC Motor Stator (단상 BLDC 전동기 고정자 노치 위치에 따른 코깅토크 저감에 관한 연구)

  • Kam, Seung-Han;Jung, Tae-Uk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.113-121
    • /
    • 2014
  • This paper presents a optimization design of 10[W] single phase BLDC motor applied Notch shape. Cogging Torque causes noise, vibration and torque ripple so notched stator is proposed in this paper. Firstly, a single phase BLDC motor needs applying aymmetric air-gap shape because this type motor cannot help having dead-point which is zero torque position. However, using asymmetric air-gap structure causes cogging torque increase. Therefore, this paper proposes the notch shape structure. Notch shape structure has some advantages; low cost, easy to apply. There are 4 optimal factors selected in optimization process, which are position and size of notches. Through building a prototype, the result of FE analysis and the experimental measurement value are compared each other and then vailidity and utility of simulation will be verified.

Analysis of Squirrel Cage Induction Motors with Rotor Eccentricity (농형 유도전동기의 회전자 편심에 따른 특성분석)

  • Kim, Mi-Jung;Kim, Byong-Kuk;Moon, Ji-Woo;Cho, Yun-Hyun;Hwang, Don-Ha;Kang, Dong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.825-826
    • /
    • 2006
  • This paper describes the effects of air gap eccentricity in induction machines. Asymmetric electro-magnetic force caused by the frictional worn bearing, rotor misalignment and unbalanced rotor etc. generates an asymmetrical operation, vibration and electro-magnetic noise. In this paper, we focus on investigating the asymmetrical operation considering of unbalanced magnetic force in squirrel-cage induction motor with 380 [V], 7.5 [kW], 4P, 1,768 [rpm]. The effects of the rotor eccentricity, magnetic force are investigated by finite element method (FEM) and experiment. The results can be useful for on-line monitoring of an induction motor.

  • PDF