• Title/Summary/Keyword: Asymmetric Root Temperature

Search Result 4, Processing Time 0.019 seconds

Effect of Asymmetric Root Temperature on the Heat Loss From a Rectangular Fin Under Unequal Surrounding Heat Convection Coefficient (주위의 열대류계수가 다를때 사각핀으로부터의 열손실에 대한 비대칭적인 핀바닥온도의 영향)

  • 강형석;김성준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1567-1571
    • /
    • 1994
  • Under the assumption that thermal conductivity of the fin is constant and the conditions ate steady state, effects of non-constant and thermally asymmetric root temperature and unequal surrounding convection coefficients of the fin on the heat loss from a fin of rectangular profile are investigated. The heat loss form a rectangular fin becomes maximum when the highest root temperature deviates from the fin center to the fin side which has a higher convection coefficient as surrounding convection coefficients of the fin increase and as the difference between the convection coefficient of fin top side and that of fin bottom side increases.

Effects of Root Gap on Residual Stresses and Deformation in the Multi-Pass Weld of Thick Plates for Steel Bridge (교량용 후판 다층용접시 잔류응력과 변형에 미치는 루트간격의 영향)

  • 장경복;김하근;강성수
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.88-96
    • /
    • 1999
  • The effects of root gap on welding residual stress and deformation are dealt with the multi-pass weldment with three kinds(0, 6, 30mm) of root gap by F.E.M common code, and then compared with experiment data. In this analysis, an 100% ramp heat input model was used to avoid numerical convergence problem due to an instantaneous increase in temperature near the fusion zone, and the effect of a moving arc in a two dimensional plane was also included. During the analysis, a small time increment was applied in a period with instantaneous temperature fluctuation while a large time increment was used in the rest period. The residual stress is distributed as symmetric types and maximum value is also equivalent when the weldment with 0mm and 6mm root gap is welded. In the case of 30mm root gap welding, the distribution of the residual stress extends over a wide range as asymmetric types due to the built-up weld, and most of the residual stress is biased in the side of a built-up weld part. In case of 0mm gap welding and 6mm gap welding, a little angular distortion occurs, but the level of deformation is small. When the weldment with 30mm root gap is welded, the angular deformation of the asymmetric types, however, occurs larger than the other specimens. The experimental and the analytic results show good coincidence and indicate that the welding residual stress and deformation distribution of 30 mm root gap specimen may be asymmetric and the amplitude is larger than those of root gap specimen under standard.

  • PDF

A Study on the Infrared Thermographic Imaging in Diagnosis of the Central Type of Herniated Disc (중앙형 추간판탈출증의 진단에서 체열촬영의 의의)

  • Song Bong-Keun;Lee Jong-Duk;Pak Yong-Hyun;Song Un-Yong;Kim Jung-Gyl
    • Journal of Acupuncture Research
    • /
    • v.15 no.2
    • /
    • pp.301-310
    • /
    • 1998
  • Infrared thermographic imaging visualizes noninvasively various abnormal condition by detecting the skin temperature. As the imaging represents the objective condition by the changes in blood flow under the control of autonomic nervous system, it is used to diagnosis and monitor the lumboscral radiculopathy. And asymmetry is important in the diagnosis of disc herniation. The most common type of disc herniation occurs psoterolaterally. This frequently causes nerve root compression leading to a radiculopathy in the distribution of the involved nerve root, most of which also provoke the asymmetric changes in thermography. Central disc herniation, which accounts for 5% to 35% of disc herniation, is typically associated with low back pain. But radiculopathy is usually abscent unless central disc heriniaton is large enough to cause compression of the cauda equina. To evalute the diagnostic value of the thermographic imaging in the diagnosis of central disc herniation, the imaging of 15 normal subjects and 48 patients with central disc herniation documented by CT scan were analyzed. The patients had either bilateral radiculophathy or no radiculopathy. The imaging of patient group with non rediculopathy did not show any significant thermal difference to control. While bilateral radiculopathy group reveled hypothermic pattern compared twith control. Thermal difference between left and right side did not present any significance in non radiculopathy group but hypothermia in bilateral radiculopathy group. Large herniation group demonstrated hyperthemic pattern while the others showed no significant change. Cranial caudal thermal difference did not show any difference between experiment groups. These results shows that infrared thermographic imaging can be used central disc herniation with bilateral radiculopathy, while it seems to little useful on the diagnosis of non radiculopathic disc herniation.

  • PDF

Characterization of Alpha-Ga2O3 Template Grown by Halide Vapor Phase Epitaxy (HVPE 방법으로 성장한 Alpha-Ga2O3의 특성 분석)

  • Son, Hoki;Ra, Yong-Ho;Lee, Young-Jin;Lee, Mi-Jai;Kim, Jin-Ho;Hwang, Jonghee;Kim, Sun Woog;Lim, Tae-Young;Jeon, Dae-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.357-361
    • /
    • 2018
  • We demonstrated a crack-free ${\alpha}-Ga_2O_3$ on sapphire substrate by horizontal halide vapor phase epitaxy (HVPE). Oxygen-and gallium chloride-synthesized Ga metal and HCl were used as the precursors, and $N_2$ was used as the carrier gas. The HCl flow and growth temperature were controlled in the ranges of 10~30 sccm and $450{\sim}490^{\circ}C$, respectively. The surface of ${\alpha}-Ga_2O_3$ template grown at $470^{\circ}C$ was flat and the root-mean-square (RMS) roughness was ~2 nm. The full width at half maximum (FWHM) values for the symmetric-plane diffractions, were as small as 50 arcsec and those for the asymmetric-plane diffractions were as high as 1,800 arcsec. The crystal quality of ${\alpha}-Ga_2O_3$ on sapphire can be controlled by varying the HCl flow rate and growth temperature.