• Title/Summary/Keyword: Asymmetric Balun

Search Result 2, Processing Time 0.014 seconds

A New Design Approach for Asymmetric Coupled-Section Marchand Balun

  • Park, Ji An;Cho, Choon Sik;Lee, Jae Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.2
    • /
    • pp.54-60
    • /
    • 2014
  • A systematic design for asymmetric coupled-section Marchand baluns is presented. Asymmetrically coupled transmission lines in multilayer configuration are exploited for constructing Marchand baluns. Design equations for characteristic impedance and electrical length of asymmetrical coupled transmission lines are derived for establishing a systematic design procedure. Novel Marchand balun based on these design equations is composed of two identical asymmetrical coupled transmission lines. However, contrary to the general conventional design approach where ranges for characteristic impedances of coupled lines are ambiguously capitalized, values for characteristic impedance and length are explicitly expressed. Our approach is fundamentally different from the design method using coupling coefficients where solution for coupling coefficient is inherently restricted. To verify the proposed method, one design example is performed for wideband Marchand balun in multilayer configuration, and is fabricated for verifying the design procedure proposed. Maintaining the return loss more than 10 dB, the bandwidth is measured from 0.43 to 1.0 GHz, where $S_{21}$ and $S_{31}$ show better than -4 dB. The measured phase and amplitude imbalances illustrate 0.5 dB and ${\pm}5^{\circ}$, respectively.

Differential LC VCO with Enhanced Tank Structure and LC Filtering Techniques in InGaP/GaAs HBT Technology (InGaP/GaAs HBT 공정을 이용하여 향상된 탱크 구조와 LC 필터링 기술을 적용한 차동 LC 전압 제어 발진기 설계)

  • Lee, Sang-Yeol;Kim, Nam-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.177-182
    • /
    • 2007
  • This paper presents the InGaP/GaAs HBT differential LC VCO with low phase noise performance for adaptive feedback interference cancellation system(AF-lCS). The VCO is verified with enhanced tank structure including filtering technique. The output tuning range for proposed VCO using asymmetric inductor and symmetric capacitors withlow pass filtering technique is 207 MHz. The output powers are -6.68 including balun and cable loss. The phase noise of this VCO at 10 kHz, 100 kHz and 1 MHz are -102.02 dBc/Hz, -112.04 dBc/Hz and -130.40 dBc/Hz. The VCO is designed within total size of $0.9{\times}0.9mm^2$.