• Title/Summary/Keyword: Assumed Strain

Search Result 542, Processing Time 0.026 seconds

Perturbation analysis of localized deformation by dynamic strain aging (Dynamic strain aging 에 의한 국소변형의 perturbation analysis)

  • Yang, Seung-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.96-100
    • /
    • 2003
  • In the tensile loading of sheet metals made from polycrystalline aluminum alloys, a single deformation band appears inclined to the elongation axis in the early stage of plastic deformation, and symmetric double bands are observed in the later stage. This character of the localized deformation bands has been analyzed by a perturbation method. Macroscopic slip modes composed of slip planes and slip directions were assumed to describe the tensile and shear strains. Along time integration path, the value of the perturbation growth parameter was checked to find at which angle to the elongation axis the localized deformation bands are generated. It was shown that the mode of the localized deformation is related to asymmetry of material property.

  • PDF

Effect of strain-rate on deformation behavior of semi-solid material (반용융 재료의 변형거동에 대한 변형률 속도의 영향)

  • 황재호;고대철;최재찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.777-781
    • /
    • 1997
  • In this study, the effect of strain-rate and inital solid fraction on the deformation behaviour of semi-solid material is investigated, when semi-solid forging is performed by the process of closed-die compression using A356 alloy of which the above results can be practically applied for industrical purpose. In order to simulate densification in the deformation of semi-solid material, the semi-solid material is assumed to be composed of solid region following rigid visco-plastic material, the liquid region following Darcy's law for the liquid flow saturated in the interstitial space. Simulation results of closed-die compression and simple upsetting under different strain-rate and initial solid fraction are compared.

  • PDF

Effect of Interface in Three-phase Cord-Rubber Composites (세 가지 상을 갖는 코드섬유-고무 복합재료의 계면의 영향)

  • Kim, Jong-Kuk;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1249-1255
    • /
    • 2009
  • Cord-rubber composites widely used in tires show very complicated mechanical behavior such as nonlinearity and large deformation. Three-phase(cord, rubber and the interface) modeling has been used to analyze the stress distribution in the cord-rubber composites more accurately. In this study, finite element methods were performed using two-dimensional generalized plane strain element and plane strain element to investigate the stress distribution and effective modulus of cord-rubber composites. Neo Hookean model was used for rubber property and several interface properties were assumed for various loading directions. It was found that the interface properties affect the effective modulus and the distributions of shear stress.

Prediction of Flow Stress of Steel in Consideration of Recrystallization (재결정거동을 고려한 강의 유동응력 예측)

  • 이동근;박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.341-348
    • /
    • 1999
  • In the finite elemenet analysis of metal forming problems, the most critical input is the flow stress of workpiece. Conventionally, the flow stress of a metal at elevated temperatures is assumed to be a function of strain, strain rate and temperature, and obtained by experiment. However, if the workpiece is not continuously deformed as in mulit-pass rolling, the flow stress obtained by experiment is no longer valid because it does not consider the microstructure evolution occurring between deformations. In the present study, it was attemped that the flow stress of steel in the austenite region be obtained equations. It was applied to the prediction of flow stress variation at each stand during hot finishing rolling of steel.

  • PDF

The prediction of grain size of Al-5wt%Mg alloy by FEM (유한요소법을 이용한 Al-5wt%Mg합금의 미세조직 크기 예측)

  • 황원주;조종래;배원병
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.620-625
    • /
    • 1999
  • A finite element analysis is performed to predict the recrystallized volume fraction and the mean grain size in hot compression of Al-5wt%Mg alloy. In the analysis, a modeling equation of flow stress is assumed as a function of strain, strain rate, and temperature. And the influence of above varibles on flow stress is quantified by using Zener-Hollomon Parameter. In the modeling equation, effects of strain hardening and dynamic recrystallization on microstructure of Al-5wt%Mg alloy are investigated. The predicted results of recrystallized volume fraction and mean grain size are in good agreement with those of microstructures obtained from hot compression tests.

  • PDF

Cracking Analysis of RC Tension Members Using Polynomial Strain Distribution Function (다항식 변형률 분포함수를 이용한 철근콘크리트 인장부재의 균열해석)

  • 곽효경;송종영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.267-274
    • /
    • 2001
  • In this paper, a analytical model which can simulate the post-cracking behavior and tension stiffening effect in a reinforced concrete(RC) tension member is proposed. Unlike the classical approaches using the bond stress-slip relationship or the assumed bond stress distribution, the tension stiffening effect at post-cracking stage is quantified on the basis of polynomial strain distribution functions of steel and concrete, and its contribution is implemented into the reinforcing steel. The introduced model can be effectively used in constructing the stress-strain curve of concrete at post-cracking stage, and the loads carried by concrete and by reinforcing steel along the member axis can be directly evaluated on the basis of the introduced model. In advance, the prediction of cracking loads and elongations of reinforced steel using the introduced model shows good agreements with results from previous analytical studies and experimental data.

  • PDF

Nonlinear Flexural Analysis of PSC Test Beams in CANDU Nuclear Power Plants

  • Bae, In-Hwan;Choi, In-Kil;Seo, Jeong-Moon
    • Nuclear Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.180-190
    • /
    • 2000
  • In this study, nonlinear analyses of prestressed concrete(PSC) test beams for inservice inspection of prestressed concrete containments for CANDU nuclear power plants are presented. In the analysis the material nonlinearities of concrete, rebar and prestressing steel are used. To reduce the numerical instability with respect to the used finite element mesh size, the tension stiffening effect has been considered. For concrete, the tensile stress-strain relationship derived from tests is modified and the stress-strain curve of rebar is assumed as a simple bilinear model. The stress-strain curve of prestressing steel is applied as a multilineal curve with the first straight line up to 0.8fpu. To prove the validity of the applied material models, the behavior and strength of the PSC test specimens tested to failure have been evaluated. A reasonable agreement between the experimental results and the predictions is obtained. Parametric studies on the tension stiffening effects, the impact of prestressing losses with time, and the compressive strength of concrete have been conducted.

  • PDF

A Study on Heaving Phenomenon by Model Test (실내모형실험을 통한 히빙 이론에 관한 연구)

  • Oak, Yong-Kwan;Im, Jong-Chul;Kwon, Jeong-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1144-1156
    • /
    • 2008
  • In this paper, heaving phenomenon is analyzed by laboratory tests. A laboratory test is consist of building soft clay foundation in plane-strain soil tank, construction of retaining wall, and excavation work. And range of shear strain, and destruction shape about soft clay foundation is compared, and analyzed with results of proposal formula. Using this study, safety factor is suggested for heaving phenomenon in the construction of wall on the soft clay. Actual theory is suggested by this suggested safety factor. There are various proposal formula for heaving phenomenon. For example, Terzaghi & Peck, Tschebotarioff, Bjerrum & Eide(Experience formula) and so on. Terzaghi & Peck's proposal formula is chosen, compared with laboratory test's result and analyzed in this study. A soft clay used in study is assumed homogeneous. A Depth of foundation is enough to observe shear strain by heaving phenomenon. Retaining wall is enough hard not to have vertical displacement.

  • PDF

Simulation of Texture Evolution and Anisotropic Properties in DP steels during Deep Drawing Process (디프드로임 시 DP강의 집합조직 및 이방성 거동 모사)

  • Song, Y.S.;Kim, B.J.;Han, S.H.;Chin, K.G.;Choi, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.396-399
    • /
    • 2008
  • A visco-plastic self-consistent (VPSC) polycrystal model has been applied to simulate texture simulation and anisotropic properties of DP steels during deep drawing process. In order to evaluate the strain path during deep drawing, a steady state was assumed in the flange part of deep drawn cup. The final stable orientations were strongly dependent on the initial location in the blank. The evolution of anisotropy of DP steel sheets has been demonstrated through comparison of plastic strain rate vector at the different plastic strain levels.

  • PDF

Calculation of Welding Deformations by Simplified Thermal Elasto-plastic Analysis

  • Seo Sung Il
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.40-49
    • /
    • 2004
  • Welding deformations injure the beauty of appearance of a structure, decrease its buckling strength and prevent increase of productivity. Welding deformations of real structures are complicated and the accurate prediction of welding deformations has been a difficult problem. This study proposes a method to predict the welding deformations of large structures accurately and practically based on the simplified thermal elasto-plastic analysis method. The proposed method combines the inherent strain theory with the numerical or theoretical analysis method and the experimental results. The weld joint is assumed to be divided into 3 regions such as inherent strain region, material softening region and base metal region. Characteristic material properties are used in structural modeling and analysis for reasonable simplification. Calculated results by this method show good agreement with the experimental results. It was proven that this method gives an accurate and efficient solution for the problem of welding deformation calculation of large structures.