• 제목/요약/키워드: Associative Learning

검색결과 67건 처리시간 0.032초

AMN을 이용한 반복학습 제어기의 성능개선 (Performance improvement of repetitive learning controller using AMN)

  • 정재욱;국태용;이택종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1573-1576
    • /
    • 1997
  • In this paper we present an associative menory network(AMN) controller for learning of robot trajectories. We use AMN controller in order to improve the performance of conventional learning control, e.g. RCL, which had studied by Sadegh et al. Computer simulations show the feasibility and effectiveness of the proposed AMN controller.

  • PDF

셀룰라 신경회로망의 연상메모리를 이용한 영상 패턴의 분류 및 인식방법 (Image Pattern Classification and Recognition by Using the Associative Memory with Cellular Neural Networks)

  • 신윤철;박용훈;강훈
    • 한국지능시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.154-162
    • /
    • 2003
  • 셀룰라 신경회로망의 연상 메모리를 이용하여 시각적인 입력 데이터의 연산을 통하여 영상 패턴의 분류와 인식을 수행한다. 셀룰라 신경회로망은 일반적인 신경회로망과 같이 비선형 데이터의 실시간 처리가 가능하고, 세포자동자와 같이 이 격자구조의 셀로 이루어져 인접한 셀과 직접 정보를 주고받는다. 응용 분야로는 최적화, 선형/비선형화, 연상 메모리, 패턴인식, 컴퓨터 비전 등에 적용할 수 있다. 영상의 이미지 픽셀을 셀룰라 신경회로망의 셀에 대응하여 전체 이미지 영상을 모든 셀룰라 신경회로망의 셀에서 동시에 병렬로 처리할 수 있어 2-D 이미지 처리에 적합하다. 본 논문은 셀룰라 신경회로망에 의한 연상 메모리 구조를 설계하고, 학습된 하중값 메모리에서 가장 적당한 하중값을 선택하여 학습된 영상과 정확히 일치하는 출력을 얻는 방법을 제시한다. 학습을 통한 연상 메모리 구현에는 각각의 뉴런에서 일정하지 않은 다른 템플릿을 사용한다. 각각의 템플릿은 뉴런들 간의 연결 하중값을 나타내고 학습에 따라 갱신된다. 학습방법으로는 템플릿 하중값 학습에 뉴런들 간의 연결 하중값을 조정하는 가장 단순한 규칙인 Hebb의 학습방법이 사용되었고 분류값 학습에 LMS 알고리즘이 사용되었다.

Formation of Attention and Associative Memory based on Reinforcement Learning

  • Kenichi, Abe;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.22.3-22
    • /
    • 2001
  • An attention task, in which context information should be extracted from the first presented pattern, and the recognition answer of the second presented pattern should be generated using the context information, is employed in this paper. An Elman-type recurrent neural network is utilized to extract and keep the context information. A reinforcement signal that indicates whether the answer is correct or not, is only a signal that the system can obtain for the learning. Only by this learning, necessary context information became to be extracted and kept, and the system became to generate the correct answers. Furthermore, the function of an associative memory is observed in the feedback loop in the Elman-type neural network.

  • PDF

Noise-tolerant Image Restoration with Similarity-learned Fuzzy Association Memory

  • Park, Choong Shik
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권3호
    • /
    • pp.51-55
    • /
    • 2020
  • 본 논문에서는 이미지 복원에 사용되는 기존의 FAM (Fuzzy Associative Memory)에 유사성 학습을 채택하여 개선된 FAM을 제안한다. 이미지 복원은 노이즈가 존재하는 버전에서 원 이미지에 가깝게 복원하는 것을 의미한다. 얼굴 인식과 같은 중요한 적용 문제에서 이 프로세스는 잡음에 강하고 견고하며 빠르며 확장 가능해야한다. 기존의 FAM 은 강력한 퍼지 제어를 통하여 도메인에 적용 할 수 있지만 실제 응용 프로그램에서는 용량 문제가 있지만 단순한 단일 계층 신경망이다. 유사성 측정은 복구 된 이미지와 원본 이미지 사이의 제곱 평균 오차를 최소화하기 위해 FAM 구조의 연결 강도와 관련이 있다. 제안된 알고리즘의 효과는 실험에서 랜덤 노이즈로 인한 오류 크기가 현저히 낮아지는 것을 확인하였다.

성능개선과 하드웨어구현을 위한 다층구조 양방향연상기억 신경회로망 모델 (A Multi-layer Bidirectional Associative Neural Network with Improved Robust Capability for Hardware Implementation)

  • 정동규;이수영
    • 전자공학회논문지B
    • /
    • 제31B권9호
    • /
    • pp.159-165
    • /
    • 1994
  • In this paper, we propose a multi-layer associative neural network structure suitable for hardware implementaion with the function of performance refinement and improved robutst capability. Unlike other methods which reduce network complexity by putting restrictions on synaptic weithts, we are imposing a requirement of hidden layer neurons for the function. The proposed network has synaptic weights obtainted by Hebbian rule between adjacent layer's memory patterns such as Kosko's BAM. This network can be extended to arbitary multi-layer network trainable with Genetic algorithm for getting hidden layer memory patterns starting with initial random binary patterns. Learning is done to minimize newly defined network error. The newly defined error is composed of the errors at input, hidden, and output layers. After learning, we have bidirectional recall process for performance improvement of the network with one-shot recall. Experimental results carried out on pattern recognition problems demonstrate its performace according to the parameter which represets relative significance of the hidden layer error over the sum of input and output layer errors, show that the proposed model has much better performance than that of Kosko's bidirectional associative memory (BAM), and show the performance increment due to the bidirectionality in recall process.

  • PDF

퍼지 인지 맵과 퍼지 연상 메모리를 이용한 오인진단 모델 (A Model for diagnosing Students′Misconception using Fuzzy Cognitive Maps and Fuzzy Associative Memory)

  • 신영숙
    • 인지과학
    • /
    • 제13권1호
    • /
    • pp.53-59
    • /
    • 2002
  • 본 논문은 퍼지 인지 맵과 퍼지 연상 메모리를 사용하여 열과 온도에 관한 학생들의 과학개념 이해에서 발생되는 오인을 진단할 수 있는 오인 진단 모델을 제시한다. 오인 진단 모델에서 퍼지 인지 맵은 과학현상에 대한 학생들이 가지는 선입개념들과 오인들을 인과관계로 표현할 수 있다. 또한 개념간의 인과관계를 기억할 수 있는 퍼지 연상 메모리를 통하여 오인의 원인들을 진단한다. 본 연구는 기존의 학습 오인을 진단하는 규칙기반 전문가 시스템의 한계성을 극복할 수 있는 새로운 방법을 제공하며, 교육분야의 다양한 영역에서 학습자들의 학습 진단을 위한 지능형 개인교수 시스템으로 적용될 수 있을 것이다.

  • PDF

연상메모리를 이용한 포도인식 이미지 프로세싱 (An image processing for recognizing a grapes by using associative memory)

  • 이대원;김동우
    • 한국생물환경조절학회:학술대회논문집
    • /
    • 한국생물환경조절학회 1999년도 정기총회 및 학술논문발표요지
    • /
    • pp.24-29
    • /
    • 1999
  • 포도 수확기를 개발하기 위해서는 포도 형상과 위치를 정확하게 파악하는 것이 필요하다. 신경회로망(Neural network)의 연상메모리(Associative memory)를 이용하여 포도 형상 정보를 인식하고자 한다. 신경회로망을 이용한 연상메모리는 학습 패턴(Learning pattern)을 학습한 후에 입력 패턴(Input pattern)으로부터 출력패턴을 얻는다. (중략)

  • PDF

The Traffic Sign Classification by using Associative Memory in Cellular Neural Networks

  • Cheol, Shin-Yoon;Yeon, Jo-Deok;Kang Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.115.3-115
    • /
    • 2001
  • In this paper, discrete-time cellular neural networks are designed in order to function as associative memories by using Hebbian learning rule and non-cloning template. The proposed method has a very simple structure to design and to learn. Weights are updated by the connection between the neuron and its neighborhood. In the simulation, the proposed method is applied to the classification of a traffic sign pattern.

  • PDF

성능이 향상된 수정된 다층구조 영방향연상기억메모리 (Modified Multi-layer Bidirectional Associative Memory with High Performance)

  • 정동규;이수영
    • 전자공학회논문지B
    • /
    • 제30B권6호
    • /
    • pp.93-99
    • /
    • 1993
  • In previous paper we proposed a multi-layer bidirectional associative memory (MBAM) which is an extended model of the bidirectional associative memory (BAM) into a multilayer architecture. And we showed that the MBAM has the possibility to have binary storage for easy implementation. In this paper we present a MOdified MBAM(MOMBAM) with high performance compared to MBAM and multi-layer perceptron. The contents will include the architecture, the learning method, the computer simulation results for MOMBAM with MBAM and multi-layer perceptron, and the convergence properties shown by computer simulation examples.. And we will show that the proposed model can be used as classifier with a little restriction.

  • PDF