• 제목/요약/키워드: Association Rules Algorithm

검색결과 141건 처리시간 0.022초

Decision Scaling 기반 댐 운영 기후변화 가뭄 취약성 평가 (Development of a decision scaling framework for drought vulnerability assessment of dam operation under climate change)

  • 김지흔;서승범;조재필
    • 한국수자원학회논문집
    • /
    • 제56권4호
    • /
    • pp.273-284
    • /
    • 2023
  • 최근 지속적인 가뭄으로 물 공급에 큰 어려움을 겪고 있으며, 이러한 극한 사상의 발생은 기후변화에 따라 더욱 빈번해질 것으로 전망된다. 본 연구는 기후변화에 따른 댐 운영 가뭄 취약성을 평가하고자, 보다 넓은 범위에서 미래 기후변화의 변동성을 반영할 수 있는 decision scaling 기법을 제안하였다. 충청남도 보령댐을 시범유역으로 선정하고 양적 신뢰도를 이용하여 평가한 결과, 보령댐의 가뭄 취약도는 도수로 반영 여부에 따라 95.80% 에서 98.13%까지 변동하였고, 기후변화에 매우 취약한 것으로 나타났다. 더불어 유전 알고리즘 기반 최적의 헤징룰을 산정하여 가뭄 취약성의 저감 효과를 분석하였고, 다양한 사회·경제적 변화에 대응하기 위해 세 가지 수요 시나리오(고수요, 저수요, 기준수요) 하에서 평가를 진행하였다. 양적 신뢰도와 극한가뭄 발생 빈도를 평가 기준으로 분석한 결과, 두 헤징룰은 K-water의 용수공급 조정기준 대비 저수요 시나리오에서 공급 안정도를 개선시킴으로써 극한가뭄에 적절히 대처할 수 있는 방법으로 사용될 수 있을 것이다.

지역 단위 가뭄단계 판단규칙 개발에 관한 연구 (A preliminary study on the determination of drought stages at the local level)

  • 이종소;전다은;윤현철;감종훈;이상은
    • 한국수자원학회논문집
    • /
    • 제56권12호
    • /
    • pp.929-937
    • /
    • 2023
  • 본 연구는 2022-2023 광주・전남지역 가뭄 사례를 바탕으로 지역 단위에서 가뭄의 심각성을 토대로 가뭄단계를 판단하는 규칙을 개발하기 위해 실시되었다. 전국의 시・군 단위로 발표되는 8가지 가뭄지표 중에서 농업용수(논) 가뭄단계, 생・공용수 가뭄단계, SPI-12, 농업용 저수지 저수율, 예년 대비 가정용수 사용량 변화율, 예년 대비 비가정용수 사용량 변화율 등의 6가지 지표는 담당자・전문가들의 인식과 통계적 상관성을 확인할 수 있었다. 또한 이 가뭄지표를 의사결정트리 알고리즘에 적용하여 가뭄의 심각성을 판단하기 위한 규칙을 도출하였는데, 선행연구에서 제안한 기존의 방법과 유사한 결과를 제시하나, 광주・전남지역 가뭄에서 확인된 시・공간적인 패턴을 설명하는데 있어서 상당한 비교우위를 보였다.

웹 로그 분석을 이용한 추천 에이전트의 개발 (Development of Recommendation Agents through Web Log Analysis)

  • 김성학;이창훈
    • 한국컴퓨터산업학회논문지
    • /
    • 제4권10호
    • /
    • pp.621-630
    • /
    • 2003
  • 웹 로그는 사용자가 웹 사이트의 데이터를 액세스할 때 웹 서버에 의해 기록되는 정보로써 최근 인터넷 이용의 급속한 증가로 인해 웹 로그의 활용가치가 더욱 중요하게 되었으며, 웹 로그의 분석 결과는 쇱 사용자들의 행위를 나타내는 패턴을 분석하거나 웹 사이트의 구조를 재배치 하는데 이용될 수 있다. 이를 실현하기 위한 많은 연구들은 주로 연관규칙과 순차패턴을 이용하고 있는데, 대다수는 Apriori 알고리즘을 기본으로 하고 있어서 대용량의 데이터베이스에 적용하기에는 컴퓨팅 시간적 측면에서 비효율적이다. 따라서 본 논문에서는 웹 환경에서 흥미있는 패턴을 탐사하는 새로운 알고리즘을 개발하여 보다 빠르게 패턴탐사를 수행하고, 많은 사용자들이 관심있게 순차적으로 접근하고 있는 정보를 시스템 관리자에게 제공할 수 있는 추천에이전트를 개발한다.

  • PDF

관세 정형 빅데이터를 활용한 우범공급망 거래패턴 선별 (Transaction Pattern Discrimination of Malicious Supply Chain using Tariff-Structured Big Data)

  • 김성찬;송사광;조민희;신수현
    • 한국콘텐츠학회논문지
    • /
    • 제21권2호
    • /
    • pp.121-129
    • /
    • 2021
  • 본 연구에서는 데이터마이닝(Data Mining) 기법 중 하나인 연관관계분석(Association Rule Mining)을 적용하여 위험화물 선별모델을 구축함으로써 관세위험을 최소화하고자 한다. 이를 위해 관세청 수입신고서 빅데이터를 활용하여 연관관계분석 알고리즘인 어프라이어리 알고리즘(Apriori Algorithm)을 적용하고 공급망 간의 위험정도를 계산한다. 대규모의 수입신고 데이터로부터 해외공급자와 수입업체 간의 세율관련(과세가격, 품목, 중수량 등), 원산지표시 위반 등에 관련한 적발결과 관한 규칙셋(Rule Set)과 이 규칙들의 신뢰도(Confidence)을 확보하여 우범공급망 간의 거래패턴을 예측할 수 있는 선별모델을 구축한다. 총 2년 6개월 치의 수입신고 데이터를 활용하여 5-겹 교차검증(5-fold cross validation)을 수행한 결과 16.6%의 Precision과 33.8%의 Recall을 보였다. 이는 빈도기반 방법보다 Precision 기준 약 3.4배 Recall 기준 약 1.5배 높은 결과이다. 이로써 논문에서 제안하고 있는 방법이 관세위험을 줄일 수 있는 효과적인 방법임을 확인하였다.

데이터마이닝을 활용한 성공적 노후 예측 키워드 분석 (An Analysis on the Predictor Keyword of Successful Aging: Focused on Data Mining)

  • 홍서연
    • 한국콘텐츠학회논문지
    • /
    • 제20권3호
    • /
    • pp.223-234
    • /
    • 2020
  • 본 연구는 Hong(2019)의 연구에서 도출된 한국 노인의 성공적인 노후에 영향을 주는 예측 키워드 32개를 중심으로 데이터마이닝의 Apriori 알고리즘을 활용하여 연관관계 규칙을 분석하였다. 그리고 한국 노인의 성공적 노후에 영향을 주는 예측변수들의 규칙 및 패턴을 파악하기 위한 지표로 지지도, 신뢰도, 향상도를 활용하였다. 본 연구의 분석은 R version 3. 5. 1 프로그램으로 분석을 실시하였으며, arulesViz 패기지와 visNetwork 패키지로 시각화하였다. 연구결과 한국 노인들의 성공적인 노후와 연관성이 높은 예측변수는 '취미', '봉사', '준비', '운동'으로 나타났다. 그리고 한국 노인의 성공적 노후를 고려할 때 가장 우선적으로 고려해야 할 변수는 '취미' 이며 그 다음 '봉사', 준비', 운동'의 순으로 고려해야 한다는 결과를 얻었다.

데이터의 의미적 정보를 공정하게 반영한 인터트랜잭션들에 대한 연관규칙 탐사 (Association rule mining for intertransactions with considering fairly data semantics)

  • 정희택
    • 한국전자통신학회논문지
    • /
    • 제9권3호
    • /
    • pp.359-368
    • /
    • 2014
  • 최근에는 트랜잭션들 사이의 문맥을 반영하기 위해, 단위 트랜잭션들 사이의 관계를 반영한 확장 트랜잭션을 생성하고 이를 대상으로 인터트랜잭션들에 대한 연관 규칙 탐사방안이 연구되었다. 본 연구에서는 기존 인터트랜잭션들에 대한 연관규칙 탐사 기법에 존재하는 두 가지 문제를 제시하였고 이를 해결하기 위한 방안을 제안하였다. 첫째, 인접한 트랜잭션들 상에 존재하는 데이터의 의미적 변화 정보를 반영하기 위한 방안을 제안했다. 둘째, 트랜잭션을 인터트랜잭션으로 변환하는 과정에서 발생하는 불공정 고려를 해결하기 위한 방안을 제안했다. 이를 통해 기존 연구보다 의미 있는 규칙을 생성할 수 있다. 이를 해양 환경 데이터를 기반으로 실험하여 제시한다.

WEB 기반 약선 식품 추천 (Medical Herbs Recommendation System based on Web)

  • 홍유식
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.121-126
    • /
    • 2020
  • 한의학에서는 어떤 질병을 앓고 있는 환자에게 어떤 약초를 사용해서 매우 좋은 효과를 얻었다고 해서 다른 환자에게도 똑 같은 약초를 다른 환자에게 그대로 추천 하는 경우는 거의 없다. 왜냐하면, 똑같은 처방전 이라도, 어떠한 사람에게는 좋은 효과가 있지만, 어떠한 사람에게는 매우 나쁜 결과가 발생하기 때문이다. 본 논문에서는 이러한 문제점을 해결하기 위해서, 환자 생체 정보 및 사상체질 정보를, web프로그램에서 선택 하면, 약선식품을 자동으로 추천 하는 알고리즘을 개발 하였다. 뿐만 아니라, 본 논문에서는 환자의 사상 체질을 자동으로 판단하는 SW 를 개발 하였다.

복합 해쉬트리를 이용한 효율적인 연관규칙 탐사 알고리즘 (An Efficient Algorithm for Mining Association Rules using a Compound Hash Tree)

  • 이재문;박종수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제26권3호
    • /
    • pp.343-352
    • /
    • 1999
  • 본 논문에서는 대용량 데이터베이스에서 효율적인 연관 규칙 탐사에 대한 알고리즘을 제안하였다. 제안하는 알고리즘은 복합 해쉬 트리를 사용하여 해쉬 트리 탐색 비용과 데이터베이스 스캔 비용을 동시에 줄임으로서 성능을 향상시켰다. 복합 해쉬 트리는 같은 크기의 항목집합들 대신에 크기가 다른 여러 항목집합을 하나의 해쉬 트리로 구성한다. 복합 해쉬 트리의 유용성을 보이기 위하여 제안한 알고리즘은 잘 알려져 있는 Apriori, DHP 방밥과 수행 시간 측면에서 성능 비교를 하였다. 그 결과 대부분의 최소 지지도에서제안한 알고리즘이 Apriori, DHP 방법보다 우수하게 나타났으며, 최소 지지도가 0.5% 이하인 경우 DHP 방법에 비하여 약 30%의 이득 향상이 있었다.

FP-tree 연관 규칙 탐사 알고리즘의 구현 및 성능 특성 (An Implementation and Performance Characteristics of the FP-tree Association Rules Mining Algorithm)

  • 이형봉
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 추계학술발표대회
    • /
    • pp.337-340
    • /
    • 2006
  • FP-tree(Frequent Pattern Tree) 연관 규칙 탐사 알고리즘은 DB 스캔에 대한 부담을 획기적으로 절감시킴으로써 전체적인 성능을 향상시키고자 제안되었다. 그런데, FP-tree는 DB에 저장된 거래 내용중 빈발 항목을 포함하는 모든 거래를 트리에 저장해야 하기 때문에 그만큼 많은 메모리를 필요로 한다. 이 논문에서는 범용 운영체제인 유닉스 시스템을 사용해서 메모리 사용 측면에서 F.P. Tree 알고리즘의 타당성과 이에 따른 성능 특성을 관찰하였다. 그 결과, F.P. Tree 알고리즘은 현대 컴퓨터에서 보편화된 512MB${\sim}$1GB의 주메모리 시스템에서 무리는 없으나, 메모리 소요량이 DB의 크기나 빈발 항목 집합의 수 보다는 거래의 길이 등 DB의 특성에 따라 급격하게 증가하는 것으로 나타났다.

  • PDF

수량 연관규칙 생성을 위한 데이터의 지역성을 고려한 효과적인 알고리즘 제안 (An Efficient Algorithm Using the locality of Data for Mining Quantitative Association Rules)

  • 이혜정;박원환;박두순
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.126-129
    • /
    • 2003
  • 최근 대용량의 데이터베이스로부터 연관규칙을 발견하여 이를 활용하는 단계에서 이러한 연관규칙을 수량항목에도 적용할 수 있도록 확장하는 연구가 소개되고 있다. 본 논문에서는 수량 항목을 이진항목으로 변환하기 위하여 빈발구간 항목집합(Large Interval Itemsets)을 생성할 때 수량 항목이 특정 영역에 집중하여 발생하거나 골고루 분포되어 있지 않은 경우, 이러한 지역성(locality)을 고려하여 빈발구간 항목집합을 생성하는 방법을 제안한다. 이 방법은 기존의 방법보다 많은 수의 세밀한 빈발구간 항목들을 생성할 수 있을 뿐만 아니라 의미 있는 구간을 중심으로 빈발구간 항목들이 순서대로 생성되기 때문에 세밀도를 판단하여 활용할 수 있으며, 원 데이터가 가지고 있는 특성의 손실을 최소화할 수 있는 특징이 있다 또한 인구센서스등 실 데이터를 사용한 성능평가를 통하여 기존의 방법보다 우수함을 보였다.

  • PDF