• Title/Summary/Keyword: Association Rules Algorithm

Search Result 141, Processing Time 0.025 seconds

An Algorithm for Mining Association Rules by Minimizing the Number of Candidate 2-Itemset (후보 2-항목집합의 개수를 최소화한 연관규칙 탐사 알고리즘)

  • 황종원;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.48
    • /
    • pp.53-63
    • /
    • 1998
  • Mining for association rules between items in a large database of sales transaction has been described as an important data mining problem. The mining of association rules can be mapped into the problem of discovering large itemsets. In this paper we present an efficient algorithm for mining association rules by minimizing the total numbers of candidate 2-itemset, │C$_2$│. More the total numbers of candidate 2-itemset, less the time of executing the algorithm for mining association rules. The total performance of algorithm depends on the time of finding large 2-itemsets. Hence, minimizing the total numbers of candidate 2-itemset is very important. We have performed extensive experiments and compared the performance of our algorithm with the DHP algorithm, the best existing algorithm.

  • PDF

Finding Negative Association Rules in Implicit Knowledge Domain (함축적 지식 영역에서 부 연관규칙의 발견)

  • Park, Yang-Jae
    • The Journal of Information Technology
    • /
    • v.9 no.3
    • /
    • pp.27-32
    • /
    • 2006
  • If is interested and create rule between it in item that association rules buys, by negative association rules is interested to item that do not buy, it is attempt to do data Maining more effectively. It is difficult that existent methods to find negative association rules find one part of rule, or negative association rules because use more complicated algorithm than algorithm that find association rules. Therefore, this paper presents method to create negative association rules by simpler process using Boolean Analyzer that use dependency between items. And as Boolean Analyzer through an experiment, show that can find negative association rules and more various rule through comparison with other algorithm.

  • PDF

An Algorithm for Updating Discovered Association Rules in Data Mining (데이타 마이닝에서 기존의 연관 규칙을 갱신하는 앨고리듬 개발)

  • 이동명;지영근;황종원;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.265-276
    • /
    • 1997
  • There have been many studies on efficient discovery of association rules in large databases. However, it is nontrivial to maintain such discovered rules in large databases because a database may allow frequent or occasional updates and such updates may not only invalidate some existing strong association rules but also turn some weak rules into strong ones. The major idea of updating algorithm is to resuse the information of the old large itemsets and to integrate the support information of the new large itemsets in order to substantially reduce the pool of candidate sets to be re-exmained. In this paper, an updating algorithm is proposed for efficient maintenance of discovered assocation rules when new transaction data are added to a transaction database. And superiority of the proposed updating algorithm will be shown by comparing with FUP algorithm that was already proposed.

  • PDF

A Fast Algorithm for Mining Association Rules in Web Log Data (상품간 연관 규칙의 효율적 탐색 방법에 관한 연구 : 인터넷 쇼핑몰을 중심으로)

  • 오은정;오상봉
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2003.11a
    • /
    • pp.621-626
    • /
    • 2003
  • Mining association rules in web log files can be divided into two steps: 1) discovering frequent item sets in web data; 2) extracting association rules from the frequent item sets found in the previous step. This paper suggests an algorithm for finding frequent item sets efficiently The essence of the proposed algorithm is to transform transaction data files into matrix format. Our experimental results show that the suggested algorithm outperforms the Apriori algorithm, which is widely used to discover frequent item sets, in terms of scan frequency and execution time.

  • PDF

Association Rules and Application Study in The Digital Library

  • Yu, Jian-Kun;Zeng, Zhi-Yong;Zhang, Wen-Bin
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2007.02a
    • /
    • pp.61-71
    • /
    • 2007
  • The Association Rules is the most important method in technology of the data mining. This text further study The Association Rules, has analyzed and commented to Apriori algorithm of The Association Rules. Have realized Apriori algorithm base on Visual Basic 6.0, probe into Apriori algorithm application among the digital library, show with experimental data of application of Association Rules in borrow in the data analysis in readers finally.

  • PDF

-An Algorithm for Cube-based Mining Association Rules and Application to Database Marketing (데이터 큐브를 이용한 연관규칙 발견 알고리즘)

  • 한경록;김재련
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.54
    • /
    • pp.27-36
    • /
    • 2000
  • The problem of discovering association rules is an emerging research area, whose goal is to extract significant patterns or interesting rules from large databases and several algorithms for mining association rules have been applied to item-oriented sales transaction databases. Data warehouses and OLAP engines are expected to be widely available. OLAP and data mining are complementary; both are important parts of exploiting data. Our study shows that data cube is an efficient structure for mining association rules. OLAP databases are expected to be a major platform for data mining in the future. In this paper, we present an efficient and effective algorithm for mining association rules using data cube. The algorithm can be applicable to enhance the power of competitiveness of business organizations by providing rapid decision support and efficient database marketing through customer segmentation.

  • PDF

A Time-based Apriori Algorithm (아이템 사용시간을 고려한 Apriori알고리즘)

  • Kang, Hyung-Chang;Yang, Kun-Tak;Kim, Chul-Soo;Rhee, Yoon-Jung;Lee, Bong-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1327-1331
    • /
    • 2010
  • Association rules are very useful and interesting patterns for discovering preferences of each person in digital-content services. The Apriori algorithm is an influential algorithm for mining frequent itemsets for association rules. However, since this algorithm does not take into account reference times of each content as an important support factor, it cannot be used to extract associations among time-based data. This paper proposes an augmented Apriori algorithm discovers association rules using both frequencies and usage times of each item.

Directed Association Rules Mining and Classification (목표 속성을 고려한 연관규칙과 분류 기법)

  • 한경록;김재련
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.63
    • /
    • pp.23-31
    • /
    • 2001
  • Data mining can be either directed or undirected. One way of thinking about it is that we use undirected data mining to recognize relationship in the data and directed data mining to explain those relationships once they have been found. Several data mining techniques have received considerable research attention. In this paper, we propose an algorithm for discovering association rules as directed data mining and applying them to classification. In the first phase, we find frequent closed itemsets and association rules. After this phase, we construct the decision trees using discovered association rules. The algorithm can be applicable to customer relationship management.

  • PDF

IMTAR: Incremental Mining of General Temporal Association Rules

  • Dafa-Alla, Anour F.A.;Shon, Ho-Sun;Saeed, Khalid E.K.;Piao, Minghao;Yun, Un-Il;Cheoi, Kyung-Joo;Ryu, Keun-Ho
    • Journal of Information Processing Systems
    • /
    • v.6 no.2
    • /
    • pp.163-176
    • /
    • 2010
  • Nowadays due to the rapid advances in the field of information systems, transactional databases are being updated regularly and/or periodically. The knowledge discovered from these databases has to be maintained, and an incremental updating technique needs to be developed for maintaining the discovered association rules from these databases. The concept of Temporal Association Rules has been introduced to solve the problem of handling time series by including time expressions into association rules. In this paper we introduce a novel algorithm for Incremental Mining of General Temporal Association Rules (IMTAR) using an extended TFP-tree. The main benefits introduced by our algorithm are that it offers significant advantages in terms of storage and running time and it can handle the problem of mining general temporal association rules in incremental databases by building TFP-trees incrementally. It can be utilized and applied to real life application domains. We demonstrate our algorithm and its advantages in this paper.

An Efficient Tree Structure Method for Mining Association Rules (트리 구조를 이용한 연관규칙의 효율적 탐색)

  • Kim, Chang-Oh;Ahn, Kwang-Il;Kim, Seong-Jip;Kim, Jae-Yearn
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.1
    • /
    • pp.30-36
    • /
    • 2001
  • We present a new algorithm for mining association rules in the large database. Association rules are the relationships of items in the same transaction. These rules provide useful information for marketing. Since Apriori algorithm was introduced in 1994, many researchers have worked to improve Apriori algorithm. However, the drawback of Apriori-based algorithm is that it scans the transaction database repeatedly. The algorithm which we propose scans the database twice. The first scanning of the database collects frequent length l-itemsets. And then, the algorithm scans the database one more time to construct the data structure Common-Item Tree which stores the information about frequent itemsets. To find all frequent itemsets, the algorithm scans Common-Item Tree instead of the database. As scanning Common-Item Tree takes less time than scanning the database, the algorithm proposed is more efficient than Apriori-based algorithm.

  • PDF