Optimal Soft Decision for Cooperative Spectrum Sensing in Cognitive Radio Systems (무선 인지 시스템에서 협력 스펙트럼 센싱을 위한 최적화된 연판정 방식)
-
- The Journal of Korean Institute of Electromagnetic Engineering and Science
- /
- v.22 no.4
- /
- pp.423-429
- /
- 2011
Cooperative spectrum sensing is proposed to overcome some problem such as multipath fading and shadowing and to improve spectrum sensing performance. There are different combining methods for cooperative spectrum sensing: hard decision method and soft decision method. In this paper, we analysis the performance of cooperative spectrum sensing with distance based weight that is kind of a soft decision rule for cognitive radio(CR) systems and CR systems sense the spectrum of the licensed user by using a energy detection method. Threshold is determined in accordance with the constant false alarm rate(CFAR) algorithm for energy detection. The signal of licensed user is OFDM signal and the wireless channel between a licensed user and CR systems is modeled as Gaussian channel. From the simulation results, the cooperative spectrum sensing with distance based weight combining(DWC) and equal gain combing(EGC) methods shows higher spectrum sensing performance than single spectrum sensing does. And the detection probability performance with the DWC is higher than that with the EGC.
This paper introduces the existence of purchase dependence that was identified during the analysis of inventory operations practice at a sales agency of dealing with spare parts for ship engines and generators. Purchase dependence is an important factor in designing an inventory replenishment policy. However, it has remained mostly unaddressed. Purchase dependence is different from demand dependence. Purchase dependence deals with the purchase behavior of customers, whereas demand dependence deals with the relationship between item-demands. In order to deal with purchase dependence in inventory operations practice, this paper proposes (Q, r) models with the consideration of purchase dependence. Through a computer simulation experiment, this paper compares performance of the proposed (Q, r) models to that of a (Q, r) model ignoring purchase dependence. The simulation experiment is conducted for two cases : a case of using a lost sale cost and a case of using a service level. For a case of using a lost sale cost, this paper calculates an order quantity, Q and a reorder point, r using the iterative procedure. However, for a case of using a service level, it is not an easy task to find Q and r. The complexity stems from the interactions among inventory replenishment policies for items. Thus, this paper considers the genetic algorithm (GA) as an optimization method. The simulation results demonstrates that the proposed (Q, r) models incur less inventory operations cost (satisfies better service levels) than a (Q, r) model ignoring purchase dependence. As a result, the simulation results supports that it is important to consider purchase dependence in the inventory operations practice.
The authors developed 28 needs assessment tools for integrated assessment centered on needs, which is the core element in care management for the elderly in home. Also, the authors collected the assessment data of 676 elderly persons in home from 120 centers under the Korea Association of Senior Welfare Centers by using the needs assessment tools, and finally developed needs extraction algorithm through decision tree analysis in data mining to identify their actual needs and provide social welfare service suitable for such needs. The needs extraction algorithm for 28 needs of the elderly in home are summarized in