• 제목/요약/키워드: Asset prices

검색결과 115건 처리시간 0.02초

금융자산의 시장 미시구조 잡음에 대한 부트스트래핑 라그랑지 승수 검정 (A Bootstrap Lagrangian Multiplier Test for Market Microstructure Noise in Financial Assets)

  • 김효진;신동완;박종헌;이상구
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.189-200
    • /
    • 2015
  • 본 논문에서는 정상적 부트스트래핑을 금융 자산 가격에서 시장 미시구조 잡음에 대한 라그랑지 승수 검정에 적용한다. 몬테 카를로 실험을 통해 부트스트래핑 방법이 조건부 이분산 모형을 적용한 기존 라그랑지 승수 검정의 유의수준 왜곡 문제를 개선함을 보인다. 이 검정을 KOSPI 지수와 원-달러 환율과 같은 실제 데이터에 적용한다.

Does a Firm's IPO Affect Other Firms in the Same Conglomerate?

  • Bhadra, Madhusmita;Kim, Doyeon
    • 아태비즈니스연구
    • /
    • 제12권3호
    • /
    • pp.37-50
    • /
    • 2021
  • Purpose - This study aimed to examine the behavior surrounding the Initial Public Offering (IPO) event of firms within the same conglomerate and the impact of under-pricing and Return on Equity(ROE) on a firm's abnormal stock returns. Design/methodology - This study collected data from 166 South Korean Chaebols, consisting of 355 firms distributed as 202 listed on Korea Composite Stock Price Index (KOSPI) and 153 firms listed on Korean Securities Dealers Automated Quotations (KOSDAQ) from 2000 to 2020. The Capital Asset Pricing Model (CAPM) and the multiple regression analysis were hired to analyze the data. Findings - First, we found an adverse price reaction of IPO listing in the same chaebol group, and firms with higher under-pricing affect other firms' stock prices more adversely within the conglomerate. Next, we explored a negatively significant relation between ROE and the chaebol firms' stock returns during IPO events. Research implications - The novelty of this study is there are not many empirical studies on the impact of IPO within a conglomerate. So, the findings of this study contribute to the literature for analyzing stock's abnormal returns within a conglomerate.

ESG 등급 변화를 이용한 책임투자전략 연구 (A Study on Responsible Investment Strategies with ESG Rating Change)

  • 이영준;강윤식;윤보현
    • 아태비즈니스연구
    • /
    • 제13권4호
    • /
    • pp.79-89
    • /
    • 2022
  • Purpose - The purpose of this study was to examine the impact of ESG rating changes of companies listed in Korean Stock Exchange on stock returns. Design/methodology/approach - This study collected prices and ESG ratings of all the companies listed on the Korea Composite Stock Price Index. Based on yearly change of ESG ratings we grouped companies as 2 portfolios(upgrade and downgrade) and calculated portfolios' return. Findings - First, the difference in returns between upgraded and downgraded portfolios is small and statistically insignificant. Second, however, in the COVID-19 period (2020 ~ 2021), the upgraded portfolio outperforms the downgraded portfolio by 0.7 percentage points per month. The difference in returns between upgraded and downgraded portfolios is statistically significant after controlling for the Carhart four factors. Lastly, there are much higher volatility when the ESG rating changes are made of companies with low levels of ESG ratings. Research implications or Originality - This study is the first to examine the impact of ESG rating changes on stock returns in Korea. Furthermore, the findings can serve as a reference for managers who want to control a firm's risk by ESG rating changes. Practically, asset managers can use the findings to construct portfolios that are less risky or more profitable than the market portfolio.

인공신경망을 이용한 주택가격지수 예측 (Prediction of Housing Price Index Using Artificial Neural Network)

  • 이지영;유재필
    • 한국산학기술학회논문지
    • /
    • 제22권4호
    • /
    • pp.228-234
    • /
    • 2021
  • 부동산의 시장 참여자들에게 부동산 가격에 대한 방향성을 예측하는 것은 의사결정에 있어서 매우 중요하다. 이를 위해 주로 회귀분석, ARIMA, VAR 등의 방법론을 사용하는데 이는 불특정 변수에 의해서 변동하는 자산의 가치를 예측하는데 한계점을 갖는다. 때문에 본 연구에서는 이를 보완하기 위해서 인공신경망 기법을 이용해 부동산 시장에서 유동성이 풍부한 서울 아파트 가격 추이를 예측하고자 한다. 인공신경망 학습을 위해서 총 12개의 거시 및 미시적 변수를 나눠 학습 모형을 설계하는데 거시적 요인은 CASE1, 미시적 요인은 CASE2 그리고 두 요인을 조합해서 요인을 구성한 CASE3 으로 나눠서 실험한다. 그 결과 CASE1 과 CASE2 는 약 2년 동안 87.5%의 예측을 보이고 CASE3은 95.8%의 예측성과를 보인다. 본 연구는 아파트 가격에 영향을 주는 다양한 요인들을 거시적 및 미시적으로 구분하여 정의하고 미래의 아파트 가격의 방향성을 예측하는데 인공신경망 기법을 제안하고 그 실효성을 분석했다. 따라서 최근 발전하고 있는 학습 기법이 부동산 분야에 다양한 관점으로 적용되어 시장 참여자들의 효율적인 의사결정을 할 수 있기를 기대한다.

다변량 비대칭 라플라스 점프확산 모형의 베이지안 추론 (Bayesian inference on multivariate asymmetric jump-diffusion models)

  • 이영은;박태영
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.99-112
    • /
    • 2016
  • 비대칭 점프확산 모형은 자산 가격의 비대칭적 변동을 효과적으로 설명하는 모형으로 활용되어 왔다. 그러나 다변량 모형으로 확장한 다변량 비대칭 라플라스 점프확산 모형은 가능도함수가 닫힌 해로 존재하지 않아 모형의 추론에 한계가 존재하였다. 본 논문에서는 이러한 한계점을 극복하기 위해 자료 확장 기법을 제안하고 새로운 베이지안 추론 방법을 개발한다. 본 논문에서 제안된 모형은 단일 점프와 공통 점프 뿐만 아니라 모든 가능한 조합으로 발생하는 점프를 반영한 확장된 다변량 비대칭 라플라스 점프확산 모형이다. 이러한 모형을 분석하기 위해 붕괴된 깁스 샘플러를 고안한 베이지안 방법을 개발하였다. 본 논문에서 제안된 모형과 방법을 모의실험 자료 및 2005년 1월 3일부터 2015년 9월 30일까지 관찰된 일별 KOSPI, S&P500, 그리고 Nikkei225에 적용하여 효율성을 검증하였다.

How to Use Financial Derivatives Wisely - A case study of KIKO -

  • Shin, Jungsoon;Lim, Yejin
    • Agribusiness and Information Management
    • /
    • 제4권1호
    • /
    • pp.24-31
    • /
    • 2012
  • This case study investigates the KIKO currency option that has been a social issue in recent years among developing countries, especially Korea, where the financial derivatives market is in a state of rapid growth. The forward transaction which becomes a basis of derivatives is intended to hedge risks that may be caused by a future change in asset prices. Although it originates from a simple form of agricultural transactions, there currently exists a variety of derivatives in more sophisticated forms. In the Korean agricultural industry, the need to use such derivatives is great, as there is a huge risk of price fluctuation in agricultural products due to frequent adverse weather. In addition, many developing countries with export-led industrial structures similar to Korea's, of necessity must resort to currency hedging as a method of reducing relevant risk. However, in most cases, the lack of understanding about financial derivatives results in an inappropriate application of these derivatives. The KIKO in this study represents such cases. Since 2007, KIKO has been sold in Korea to many small- and medium-sized export companies for the purpose of currency hedging when the exchange rate between the Korean won and the U.S. dollar was in a downward spiral. The main focus of this study is a case which is most representative of KIKO. As inflation rapidly increased during the financial crisis in the U.S. at the end of 2007, derivatives became a hot issue in the courts rather than in the financial markets. This case study investigates what KIKO and the fierce legal debates over it imply, from the perspective of the option of value evaluation in order to suggest not only a direction in which companies can utilize financial derivatives, but also a roadmap for the future derivatives market.

  • PDF

GPD 기반의 유전자 알고리즘을 이용한 포트폴리오 최적화 (Finding optimal portfolio based on genetic algorithm with generalized Pareto distribution)

  • 김현돈;김현태
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권6호
    • /
    • pp.1479-1494
    • /
    • 2015
  • 최적의 포트폴리오를 선택하기 위한 연구는 평균-분산모형을 시작으로 다양하게 진행되어 왔다. 과거에는 위험자산의 확률분포가 정규분포를 따른다고 가정하여, 투자자가 보유한 위험자산의 분산이 최소화되고 기대수익률이 최대가 되도록 포트폴리오를 구성하도록 하였다. 그러나 실제 위험자산의 분포에는 극단적인 사건들이 많이 발생하기 때문에 정규분포보다 훨씬 꼬리부분이 두꺼우며, 또한 왼쪽꼬리와 오른쪽꼬리가 대칭적이지도 않은 것으로 밝혀졌다. 이에 본 논문에서는 위험자산의 확률분포를 극단치 이론에서 널리 사용되는 일반화 파레토분포 (GPD)로 모형화하였고 체계적인 위험의 추정을 위하여 VaR를 이용하는 한편, 최적의 포트폴리오의 탐색을 위해서는 유전자 알고리즘을 사용하였다. 제안 방법의 적정성을 확인하기 위해 국내 증시에서 최적 포트폴리오를 탐색해 보았으며, 그 결과 GPD로 투자자산의 위험을 추정하였을 때 가장 좋은 결과를 얻을 수 있었다.

On-Chain Data를 활용한 LSTM 기반 비트코인 가격 예측 (Utilizing On-Chain Data to Predict Bitcoin Prices based on LSTM)

  • 안유진;오하영
    • 한국정보통신학회논문지
    • /
    • 제25권10호
    • /
    • pp.1287-1295
    • /
    • 2021
  • 최근 10여 년 동안 가장 가파르게 가치가 상승한 자산군을 꼽자면 단연 비트코인이라고 할 수 있을 것이다. 특히 비트코인은 중앙통제 기관이 없음에도 불구하고 첫 등장을 한 2009년의 사실상 0달러에서 2021년 최고점인 65,000 달러 수준까지 치솟아 역사에 길이 남을 가치 상승을 보여주었다. 이에 따라 비트코인의 가능성에 대해서 반신반의 했던 상당수 투자자들의 포트폴리오에도 비트코인이 상당한 비중을 차지하는 경우가 많아졌으며, 제도권 내의 금융권에서도 이런 비트코인의 움직임에 주목하고 있다. 비트코인에 대한 관심과 더불어 비트코인의 가격에 거시경제 변수나 센티멘트가 비트코인의 가격이 어떻게 움직이는가에 대한 연구 또한 상당히 진전되었다. 하지만, 이들 연구에서 활용한 변수들은 비트코인만의 특징적인 데이터라고 할 수 있는 블록체인 내의 데이터를 취합하여 가공한 온체인 데이터를 적극적으로 활용하지는 않았다. 따라서, 본 논문에서는 시계열 데이터 예측에 적극적으로 활용되고 있는 LSTM을 기반으로 온체인 데이터를 활용하여 비트코인의 가격을 예측해보고자 한다.

미분가능 신경망을 이용한 옵션 가격결정 (Option Pricing using Differentiable Neural Networks)

  • 지상문
    • 한국정보통신학회논문지
    • /
    • 제25권4호
    • /
    • pp.501-507
    • /
    • 2021
  • 신경망은 미분가능한 활성화 함수를 사용하는 경우에는 입력변수에 대하여 미분가능하다. 본 연구에서는 신경망의 근사 능력을 향상시키기 위하여 신경망의 그래디언트와 헤시안이 블랙-숄즈 미분방정식을 만족하도록 한다. 본 논문은 확률 미분방정식과 블랙-숄즈 편미분 방정식이 옵션 가격과 기초자산의 미분관계를 표현하는 옵션 가격결정에 제안한 방법을 사용한다. 이는 옵션 가격의 일차와 이차미분은 금융공학에서 중요한 역할을 하므로 미분 값을 쉽게 얻을 수 있는 제안한 방법을 적용할 수 있기 때문이다. 제안한 신경망은 (1) 확률 미분방정식이 생성하는 옵션가격의 샘플 경로와 (2) 각 시간과 기초자산 가격에서 블랙-숄즈 방정식을 만족하도록 학습한다. 실험을 통하여 제안한 방법이 옵션가격과 일차와 이차 미분 값을 정확히 예측함을 보인다.

The Implications of Simultaneous Capital Stop and Retrenchment during Financial Crises

  • Suh, Jae-Hyun
    • Journal of Korea Trade
    • /
    • 제24권7호
    • /
    • pp.38-53
    • /
    • 2020
  • Purpose - A financial crash triggers asset fire sales by foreign investors and, as a consequence, the price of domestic assets severely decreases. Domestic investors take advantage of these low prices by replacing foreign assets with domestic assets, which helps to alleviate the liquidity shock caused by foreigners. However, is the amount of capital retrenchment by domestic investors sufficient to protect the Korean economy from capital stop by foreign investors during financial crisis? This paper answers this question and suggests the implications of this phenomenon for the Korean economy. Design/methodology - We estimate the associations between capital stop and retrenchment and various financial crises such as banking, currency, debt, and inflation crises using the complementary log-log model. Specifically, we use data of gross capital flows to differentiate between the role of foreign and domestic investors in financial markets. Capital stop and retrenchment designate a sharp decrease in gross capital inflows and outflows, respectively. Findings - Capital stop is significantly associated with financial crises, especially currency and debt crises. This implies that increased risk aversion during times of financial turmoil encourages foreign investors to retrench their investments, worsening liquidity shocks. Conversely, capital retrenchment is not significantly associated with such crises. The results show that, although financial crises reduce gross capital outflows, the reduction is not as large as that with capital inflows. Originality/value - The contribution of this paper is threefold. First, this study investigates how domestic investors behave during times of financial distress by studying gross capital flows-not net capital flows. Second, we concentrate on sharp changes in capital flows during crises. Third, we examine the associations between capital stop and retrenchment and financial crises in general, not specific events.