• Title/Summary/Keyword: Assessment of deterioration

Search Result 332, Processing Time 0.025 seconds

Design and implementation of a SHM system for a heritage timber building

  • Yang, Qingshan;Wang, Juan;Kim, Sunjoong;Chen, Huihui;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.561-576
    • /
    • 2022
  • Heritage timber structures represent the history and culture of a nation. These structures have been inherited from previous generations; however, they inevitably exhibit deterioration over time, potentially leading to structural deficiencies. Structural Health Monitoring (SHM) offers the potential to assess operational anomalies, deterioration, and damage through processing and analysis of data collected from transducers and sensors mounted on the structure. This paper reports on the design and implementation of a long-term SHM system on the Feiyun Wooden Pavilion in China, a three-story timber building built more than 500 years ago. The principles and features of the design and implementation of SHM systems for heritage timber buildings are systematically discussed. In total, 104 sensors of 6 different types are deployed on the structure to monitor the environmental effects and structural responses, including air temperature and humidity, wind speed and direction, structural temperatures, strain, inclination, and acceleration. In addition, integrated data acquisition and transmission subsystem using a newly developed software platform are implemented. Selected preliminary statistical and correlation analysis using one year of monitoring data are presented to demonstrate the condition assessment capability of the system based on the monitoring data.

Service Life Prediction of Concrete Structures Exposed to a Sulfuric Acid Environment

  • Jeon, Joong-Kyu;Moon, Han-Young;Jeon, Chan-Ki;Song, Jong-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.385-389
    • /
    • 2007
  • In this study, it was investigated the resistance of OPC, 60% GGBS, 20% PFA and 10% SF mortar specimens against sulfuric acid corrosion. As an index for degree of acid corrosion, the corrosion depth was evaluated. Then, it was found that an increase in the duration of immersion and a decrease in the pH, as expected, resulted in a more severe corrosion irrespective of binders; 60% GGBS mortar specimen was the most resistant to sulfuric acid corrosion. From the laboratory testing of sulfuric acid corrosion, an empirical prediction model was suggested as a power function of time and the pH of sulfuric acid, and was applied to an assessment of concrete structures exposed to an acidic environment. It was found that the empirical model gave a more precise prediction of sulfuric acid deterioration of concrete rather than a conventional model, mostly used for predicting carbonation of concrete.

Field Research for the Durability Assessment Factor for deriving the Carbonation of Concrete Bridges in the Marine Environment (해양 환경하 콘크리트 교량의 탄산화 내구성능 평가 인자 도출을 위한 현장조사 연구)

  • Chai, Won-Kyu;Lee, Myeong-Gu;Son, Young-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.102-109
    • /
    • 2015
  • In this study, on the basis of the results of the field survey and the theoretical consideration for Korean Standard Specification for concrete durability and maintenance, the following conclusions are derived. From the survey, the prediction equation of carbonation depth for the southwest region in Korea is experimentally proposed, $y_p=5.865{\sqrt{t}}$, which predicts about 60mm of the carbonation depth for the concrete structures of 100 years, a 1st class of target endurance period, under a combined deterioration environment like a marine environment. Considering that the marginal value for a carbonation depth limitation under very severely marine environment is 25mm, in accordance with the Specification, it is found that the predicting carbonation depth for the concrete cover depths, 100mm and 60mm are 63mm and 29.4mm, respectively. In conclusion, according to the equation and the Specification, it is strongly required that the reinforced concrete structures with the cover depth under 100mm have to make a protection from combined deterioration factors by any methods like a surface coating, an increment of cover depth or an application of a special concrete.

Quantitative assessment on the reinforcing behavior of the CFRP-PCM method on tunnel linings

  • Han, Wei;Jiang, Yujing;Zhang, Xuepeng;Koga, Dairiku;Gao, Yuan
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.123-134
    • /
    • 2021
  • In this paper, the carbon fiber reinforced plastic (CFRP) grids embedded in polymer cement mortar (PCM) shotcrete (CFRP-PCM method) was conducted to repair the degraded tunnel linings with a cavity. Subsequently, the reinforcing effect of the CFRP-PCM method under different degrees of lining deterioration was quantitatively evaluated. Finally, the limit state design method of the M-N interaction curve was conducted to determine whether the structure reinforced by the CFRP-PCM method is in a safe state. The main results indicated that when the cavity is at the shoulder, the lining damage rate is more serious. In addition, the remarkably reinforcing effect on the degraded tunnel linings could be achieved by applying a higher grade of CFRP grids, whereas the optimization effect is no longer obvious when the grade of CFRP grids is too high (CR8); Furthermore, it is found that the M-N numerical values of the ten reinforcing designs of the CFRP-PCM method are distributed outside the corresponding M-N theoretical interaction curves, and these designs should be avoided in the corresponding reinforcing engineering.

A Study on the Analysis of 3 Dimensional Substrate Behaviour of Complex Environmental Deterioration and the Analysis of Results (복합열화분석용 3차원 거동대응성 시험방법 및 결과분석)

  • Song, Je-Young;Oh, Kyu-hwan;Choi, Eun-Kyu;Lee, Jung-Hun;Kim, Byoungil;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.77-78
    • /
    • 2017
  • Although many waterproofing materials and techniques have been developed and applied, there is still a leakage in concrete structures. The main reason for the failure of waterproofing is due to the lack of consideration of the environmental conditions and the inconsistent performance requirement of the waterproofing materials in response to the complexity of the environmental conditions., and materials that are unsuitable to the environment are still being selected for usage due to their low price. Moreover, there is no valid test assessment for waterproofing materials to be used prior to actual application in the construction site. The development of a testing method and apparatus that can evaluate the composite waterproofing method is proposed in this paper and an interpretation method that can analyze the results of the evaluation.

  • PDF

Development of the Expert System for Management on Slab Bridge Decks (슬래브교 상판의 전문가 시스템 개발)

  • Ahn, Young-Ki;Lee, Cheung-Bin;Yim, Jung-Soon;Lee, Jin-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.267-277
    • /
    • 2003
  • The purpose of this study makes a retrofit and rehabilitation practice trough the analysis and the improvement for the underlying problem of current retrofit and rehabilitation methods. Therefore, the deterioration process, the damage cause, the condition classification, the fatigue mechanism and the applied quantity of strengthening methods for slab bridge decks were analysed. Artificial neural networks are efficient computing techniqures that are widely used to solve complex problems in many fields. In this study, a back-propagation neural network model for estimating a management on existing slab bridge decks from damage cause, damage type, and integrity assessment at the initial stsge is need. The training and testing of the network were based on a database of 36. Four different network models werw used to study the ability of the neural network to predict the desirable output of increasing degree of accuracy. The neural networks is trained by modifying the weights of the neurons in response to the errors between the actual output values and the target output value. Training was done iteratively until the average sum squared errors over all the training patterms were minimized. This generally occurred after about 5,000 cycles of training.

Development of Uncertainty-Based Life-Cycle Cost System for Railroad Bridges (불확실성을 고려한 철도 교량의 LCC분석 시스템 개발)

  • Cho, Choong-Yuen;Sun, Jong-Wan;Kim, Lee-Hyeon;Cho, Hyo-Nam
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1158-1164
    • /
    • 2007
  • Recently, the demand on the practical application of life-cycle cost effectiveness for design and rehabilitation of civil infrastructure is rapidly growing unprecedentedly in civil engineering practice. Accordingly, it is expected that the life-cycle cost in the 21st century will become a new paradigm for all engineering decision problems in practice. However, in spite of impressive progress in the researches on the LCC, so far, most researches in Koreahave only focused on roadway bridges, which are not applicable to railway bridges. Thus, this paper presents the formulation models and methods for uncertainty-based LCCA for railroad bridges consideringboth objective statistical data available in the agency database of railroad bridges management and subjective data obtained form interviews with experts of the railway agency, which are used to anew uncertainty-based expected maintenance/repair costs including lifetime indirect costs. For reliable assessment of the life-cycle maintenance/repair costs, statistical analysis considering maintenance history data and survey data including the subjective judgments of railway experts on maintenance/management of railroad bridges, are performed to categorize critical maintenance items and associated expected costs and uncertainty-based deterioration models are developed. Finally, the formulation for simulation-based LCC analysis of railway bridges with uncertainty-based deterioration models are applied to the design-decision problem, which is to select an optimal bridge type having minimum Life-Cycle cost among various railway bridges types such as steel plate girder bridge, and prestressed concrete girder bridge in the basic design phase.

  • PDF

Prediction of the remaining service life of existing concrete bridges in infrastructural networks based on carbonation and chloride ingress

  • Zambon, Ivan;Vidovic, Anja;Strauss, Alfred;Matos, Jose;Friedl, Norbert
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.305-320
    • /
    • 2018
  • The second half of the 20th century was marked with a significant raise in amount of railway bridges in Austria made of reinforced concrete. Today, many of these bridges are slowly approaching the end of their envisaged service life. Current methodology of assessment and evaluation of structural condition is based on visual inspections, which, due to its subjectivity, can lead to delayed interventions, irreparable damages and additional costs. Thus, to support engineers in the process of structural evaluation and prediction of the remaining service life, the Austrian Federal Railways (${\ddot{O}}$ BB) commissioned the formation of a concept for an anticipatory life cycle management of engineering structures. The part concerning concrete bridges consisted of forming a bridge management system (BMS) in a form of a web-based analysis tool, known as the LeCIE_tool. Contrary to most BMSs, where prediction of a condition is based on Markovian models, in the LeCIE_tool, the time-dependent deterioration mechanisms of chloride- and carbonation-induced corrosion are used as the most common deterioration processes in transportation infrastructure. Hence, the main aim of this article is to describe the background of the introduced tool, with a discussion on exposure classes and crucial parameters of chloride ingress and carbonation models. Moreover, the article presents a verification of the generated analysis tool through service life prediction on a dozen of bridges of the Austrian railway network, as well as a case study with a more detailed description and implementation of the concept applied.

Consideration of Making Techniques and Deterioration Assessment using Radiography for the Iron Buddha Statues (방사선 투과촬영을 활용한 철불의 손상도 평가 및 제작기법 고찰)

  • Han, Na Ra;Lee, Chan Hee;Yi, Jeong Eun
    • Journal of Conservation Science
    • /
    • v.30 no.1
    • /
    • pp.81-93
    • /
    • 2014
  • As the Seated Iron Buddha Statues, Vairocana Buddha of Dopiansa Temple in Cheolwon, Nosana Buddha of Samhwasa Temple in Donghae and Sakyamuni of Mangisa Temple in Pyeongtaek were made during Unified Silla to Koryo Dynasty. These are damaged degradation which are crack, break-out, peel off and various pollutant. As a result of deterioration evaluation using radiography, crack, gap, break-out, pore space and restoration material are confirmed inside in the Buddha Statues. Based on iron strength, the Buddha Statues will be maintain current state as long as a high external impact is not applied. Also, iron core and nails used for fixing of internal and external framework were observed in the Buddha Statues. According to prominent line of surface, embossed inscription, hands cast separately and combined, the Buddha Statues were made by using division casting.

Petrological and Conservational Scientific Deterioration Assessment of the Chungung-dong 5-Storied Stone Pagoda, Hanam City, Korea (하남시 춘궁동 오층석탑의 암석학적 및 보존과학적 훼손도 평가)

  • 이찬희;서만철;채상정;정연삼;이효민
    • Economic and Environmental Geology
    • /
    • v.37 no.2
    • /
    • pp.225-234
    • /
    • 2004
  • The Chungung-dong 5-storied pagoda (Treasure No. 12) in the nnm, Korea was studied on the basis of petrological weathering and deterioration diagnosis. Frontal part of the pagoda is looked out on the N30$^{\circ}$W. Constitution rocks of this pagoda show augen gneiss and biotite granite. Host rock of the pagoda was highly exfoliation and discoloration, therefore most rock-forming minerals were altered to the clay minerals due to the mineralogical and chemical weathering. Open cavity and rock surface occur partly green and black patchs because of contamination by algae, lichen and moss, and the lower part of the pagoda is transition to the some weeds. This biological problems are need for cleaning and chemical treatments. For the structural stability, the pagoda is rebuilt without open gap between the each rock materials. All iron plates eliminate from the difference gap of the rock materials, and properly conservation treatments need to be repaired petro-filler for stone cultural properties and water curtain for the humidity attenuation of the ground.