• Title/Summary/Keyword: Assembly standard

Search Result 246, Processing Time 0.029 seconds

Strength properties of composite clay balls containing additives from industry wastes as new filter media in water treatment

  • Rajapakse, J.P.;Gallage, C.;Dareeju, B.;Madabhushi, G.;Fenner, R.
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.859-872
    • /
    • 2015
  • Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to $1100^{\circ}C$ at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.

Reference Spent Nuclear Fuel for Pyroprocessing Facility Design (파이로공정 시설 개념설계를 위한 기준 사용후핵연료 선정)

  • Cho, Dong-Keun;Yoon, Seok-Kyun;Choi, Heui-Joo;Choi, Jong-Won;Ko, Won-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • An estimation has been made for inventories and characteristics of spent nuclear fuel(SNF) to be generated from existing and planned nuclear power plants based on the 3rd Basic Plan for Electric Power Demand and Supply. The characteristics under consideration in this study are dimensions, a fuel rod array, a weight, $^{235}U$ enrichment, and the discharge burnup in terms of fuel assembly. These are essentially needed for designing a pyroprocessing facility. It is appeared that the anticipated quantity by the end of 2077 is about 23,000 tU for PWR spent nuclear fuel. It is revealed that the proportion of SNF with the initial $^{235}U$ enrichment below 4.5 weight percent(wt.%) is approximately 95 % in total. For SNF with 16$\times$16 fuel rod array the proportion is expected approximately 74% in total. It appears that the average burnup of SNF will be 55 GWd/tU after the medium and/or latter part of 2010s while the average burnup is 45 GWd/tU at present. Finally, a requirement in terms of reference SNF for designing the pyroprocessing facility has been derived from the above-mentioned results. The anticipated SNF seems to be 16$\times$16 Korean Standard Fuel Assembly with a cross section of 21.4 cm$\times$21.4 cm, a length of 453 cm, a mass of 672 kg, the initial $^{235}U$ enrichment of 4.5 wt.%, and the discharge burnup of 55 GWd/tU.

  • PDF

Research for the Element to Analyze the Performance of Modern-Web-Browser Based Applications (모던 웹 브라우저(Modern-Web-Browser) 기반 애플리케이션 성능분석을 위한 요소 연구)

  • Park, Jin-tae;Kim, Hyun-gook;Moon, Il-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.278-281
    • /
    • 2018
  • The early Web technology was to show text information through a browser. However, as web technology advances, it is possible to show large amounts of multimedia data through browsers. Web technologies are being applied in a variety of fields such as sensor network, hardware control, and data collection and analysis for big data and AI services. As a result, the standard has been prepared for the Internet of Things, which typically controls a sensor via HTTP communication and provides information to users, by installing a web browser on the interface of the Internet of Things. In addition, the recent development of web-assembly enabled 3D objects, virtual/enhancing real-world content that could not be run in web browsers through a native language of C-class. Factors that evaluate the performance of existing Web applications include performance, network resources, and security. However, since there are many areas in which web applications are applied, it is time to revisit and review these factors. In this thesis, we will conduct an analysis of the factors that assess the performance of a web application. We intend to establish an indicator of the development of web-based applications by reviewing the analysis of each element, its main points, and its needs to be supplemented.

  • PDF

RCCA End-Tip Examination by ECT (원자로 제어봉 End-Tip 원주방향균열 와전류검사)

  • Lee, H.J.;Nam, M.W.;Jung, G.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.6
    • /
    • pp.455-463
    • /
    • 1998
  • RCCA(rod cluster control assembly) End-Tip suffers from neutron irradiation and constant vibration due to high-speed internal flow of primary coolant during plant operation. Such operating conditions cause the RCCA end-tip crackings around tile circumferential weldment of the end-tip, and in some cases, the defective end-tips were completly broken loose. However, no reliable inspection techniques for end-tip crackings were developed in the past, although some techniques exist for inspecting RCCA control rod wears. Therefore, NDE group at KEPRI has developed an ECT technique for the detection and the sizing of the end-tip crackings. The technique uses a specially designed surface-riding probe that can detect size of circumferential crackings with an accuracy of ${\pm}5.31%$ RMS error. This paper describes the ECT instrumentation including the ECT probes, calibration bars, as well as technical approaches.

  • PDF

In situ UHV TEM studies on nanobubbles in graphene liquid cells

  • Shin, Dongha;Park, Jong Bo;Kim, Yong-Jin;Kim, Sang Jin;Kang, Jin Hyoun;Lee, Bora;Cho, Sung-Pyo;Novoselov, Konstantin S.;Hong, Byung Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.102-102
    • /
    • 2016
  • Water, which is most abundant in Earth surface and very closely related to all forms of living organisms, has a simple molecular structure but exhibits very unique physical and chemical properties. Even though tremendous effort has been paid to understand this nature's core substance, there amazingly still lefts much room for scientist to explore its novel behaviors. Especially, as the scale goes down to nano-regime, water shows extraordinary properties that are not observable in bulk state. One of such interesting features is the formation of nanoscale bubbles showing unusual long-term stability. Nanobubbles can be spontaneously formed in water on hydrophobic surface or by decompression of gas-saturated liquid. In addition, the nanobubbles can be generated during electrochemical reaction at normal hydrogen electrode (NHE), which possibly distorts the standard reduction potential at NHE as the surface nanobubble screens the reaction with electrolyte solution. However, the real-time evolution of these nanobubbles has been hardly studied owing to the lack of proper imaging tools in liquid phase at nanoscale. Here we demonstrate, for the first time, that the behaviors of nanobubbles can be visualized by in situ transmission electron microscope (TEM), utilizing graphene as liquid cell membrane. The results indicate that there is a critical radius that determines the long-term stability of nanobubbles. In addition, we find two different pathways of nanobubble growth: i) Ostwald ripening of large and small nanobubbles and ii) coalescence of similar-sized nanobubbles. We also observe that the nucleation and growth of nanoparticles and the self-assembly of biomolecules are catalyzed at the nanobubble interface. Our finding is expected to provide a deeper insight to understand unusual chemical, biological and environmental phenomena where nanoscale gas-state is involved.

  • PDF

Development of Power Supplies for Radiation Monitoring System and Process Control System of Korean-type Standard Nuclear Pourer Plants (한국형 표준원전의 방사선감시계통 및 공정제어계통 전원공급기 국산화 개발)

  • Roh, J.H.;Kwon, Y.G.;Jang, D.S.;Oh, C.Y.;Lee, C.H.;Kim, Y.K.;Ju, D.S.;Cho, H.M.;Park, W.G.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.515-517
    • /
    • 2008
  • 현재 가동 중인 원자적발전소 계측제어설비의 전원공급기를 살펴보면 인버터 또는 별도의 교류를 입력전원으로 사용한다. 직류 전원공급기들은 설비의 중요도예 따라 이중화로 구성된 설비도 있고 그렇지 않은 기기나 설비도 있다. 이중화로 구성된 전원공급기라 해도 교류 입력전원이 동일하다면 교류 입력이 상실될 때 이중화로 구성된 직류전원도 상실되어 관련계통의 가동이 정지된다. 이러한 문제점을 해결하기 위해서는 각기 다른 교류입력전원으로 동작되는 이중화전원공급기로 구성되는 것이 가장 바람직하다. 본 연구개발의 목적은 두 종의 설비에 소요되는 3종의 직류전원 공급기를 원자력 안정성등급으로 국산화하는 연구이다. 기존 제품들은 3종 모두 리니어 방식의 제품이지만, 방사선감시 계통 현장제어기의 5V로직 전원공급기와 공정제어계통 전원공급자는 전력변환효율이 높고 소형, 정량화가 가능한 SMPS(Switched Mode Power Supply) 방식으로 개발하였다. 방사선감시계통 현장제어기의 PCA(Printed Circuit Assembly) 저전압공급기는 다양한 종류의 출력전압과 저 전류형이므로 안정성 면에서 동일한 형식의 리니어 방식으로 개발하였으며 3종류 모두 출력용량을 20% 이상 향상시켰다. 또한, 논문을 통해 SMPS 방식의 전원공급기의 핵심 부품인 Control Module을 Hybrid IC형으로 자체 설계하여 성능이 우수한 제품을 지속적으로 생산할 수 있는 기틀을 마련하고자 한다.

  • PDF

A Study on the Development of a Work Operation Process Chart for Smart Distribution Board Fabrication (스마트 분전반 제작을 위한 작업 공정도 개발에 관한 연구)

  • Lee, Byung-Seol;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • This study presented the strength of the materials and parts for smart distribution board fabrication, and developed a work operation process chart for smart distribution board fabrication. This work operation process chart for smart distribution board fabrication complied with SPS-KEMC regulations, and the applicable range and object are less than 1,000 V and 1,000 Hz for the AC distribution board and less than 1,500 V for the DC distribution board. The power supply is 3 phase 4 wires ($3{\Phi}$ 4W), divided into a single phase circuit and a 3 phase circuit. In addition, the circuit was configured so that the leakage current flowing through the distribution line of the load could be monitored in real time by using the sensor module installed at the rear end of the circuit breaker. Therefore, the administrator can easily find the risk factor of the load since engineer can check the leakage current of each distribution line. In addition, if a leakage current greater than standard value flows, it is possible to generate an alarm against a short circuit and cut off the leakage current. The work operation process chart for the smart distribution board fabrication consists of the following steps: raw and subsidiary materials, sheet metal work, tube making, welding, painting, busbar fabrication, assembly and wiring, product inspection, shipment, etc. Moreover, symbols, ${\Delta}$, ${\nabla}$, ${\bigcirc}$, ${\Rightarrow}$, etc. were used according to the type of work and work progress so that workers can easily understand the progress of the work.

A Study on Distribution Standardization through AMOS Analysis (AMOS 분석을 통한 물류효율화에 관한 고찰)

  • Koh, Jae-Ho;Kim, Tae-Hwan;Kim, Sok-Eun;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.3
    • /
    • pp.167-181
    • /
    • 2008
  • There are lack of labour and increase in logistics costs due to rapid change in logistics environments and the demand for logistics. The reality is that over spending on logistics costs are getting worse due to lack of logistics standardization. An example will be excessive logistics costs caused by unsatisfactory use of logistics equipments in wholesale markets. The logistics efficiency is falling due to delays in using logistics equipments and standardization. Therefore, there needs standardization of logistics functions and unit of handling in each stage from packing, unloading, storage, transporting, logistics information and needs logistics standardization on equipments, machineries used for the above. Standard unified with standardization is called specification and if standardization is applied broadly in manufacturing or processing, inspection than each process in terms of production can be managed rationally and labour skills will improve and product quality will be evenly maintained and compatability of each part in terms of assembly will be maintained thus materials and labour could be saved thus results in increasing productivity and lowering production costs. Also, if it is applied in industry at state-level then there will be rationalization in consumption in circulation as in purchase of raw materials, sales of products, purchase of products by consumers and contribute in improving compatibility and fair transactions. This paper is aimed to help in first solving factors affecting the most in improving logistic efficiency among unit load system and logistic hollowization, standardizing logistics base, standardizing logistics information. The study conducted surveys on limited companies but hope that in the future the target companies can be divided further into types, industries and conduct more demonstrative analysis.

Design of $GF(3^m)$ Current-mode CMOS Multiplier ($GF(3^m)$상의 전류모드 CMOS 승산기 설계)

  • Na, Gi-Soo;Byun, Gi-Young;Kim, Heung-Soo
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.54-62
    • /
    • 2004
  • In this paper, we discuss on the design of a current mode CMOS multiplier circuit over $GF(3^m)$. Using the standard basis, we show the variation of vector representation of multiplicand by multiplying primitive element α, which completes the multiplicative process. For the $GF(3^m)$ multiplicative circuit design, we design GF(3) adder and multiplier circuit using current mode CMOS technology and get the simulation results. Using the basic gates - GF(3) adder and multiplier, we build the $GF(3^m)$ multiplier circuit and show the examples for the case m=3. We also propose the assembly of the operation blocks for a complete $GF(3^m)$ multiplier. Therefore, the proposed circuit is easily extensible to other p and m values over $GF(p^m)$ and has advantages for VLSI implementation. We verify the validity of the proposed circuit by functional simulations and the results are provided.

  • PDF

Seismic Response Amplification Factors of Nuclear Power Plants for Seismic Performance Evaluation of Structures and Equipment due to High-frequency Earthquakes (구조물 및 기기의 내진성능 평가를 위한 고주파수 지진에 의한 원자력발전소의 지진응답 증폭계수)

  • Eem, Seung-Hyun;Choi, In-Kil;Jeon, Bub-Gyu;Kwag, Shinyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.123-128
    • /
    • 2020
  • Analysis of the 2016 Gyeongju earthquake and the 2017 Pohang earthquake showed the characteristics of a typical high-frequency earthquake with many high-frequency components, short time strong motion duration, and large peak ground acceleration relative to the magnitude of the earthquake. Domestic nuclear power plants were designed and evaluated based on NRC's Regulatory Guide 1.60 design response spectrum, which had a great deal of energy in the low-frequency range. Therefore, nuclear power plants should carry out seismic verification and seismic performance evaluation of systems, structures, and components by reflecting the domestic characteristics of earthquakes. In this study, high-frequency amplification factors that can be used for seismic verification and seismic performance evaluation of nuclear power plant systems, structures, and equipment were analyzed. In order to analyze the high-frequency amplification factor, five sets of seismic time history were generated, which were matched with the uniform hazard response spectrum to reflect the characteristics of domestic earthquake motion. The nuclear power plant was subjected to seismic analysis for the construction of the Korean standard nuclear power plant, OPR1000, which is a reactor building, an auxiliary building assembly, a component cooling water heat exchanger building, and an essential service water building. Based on the results of the seismic analysis, a high-frequency amplification factor was derived upon the calculation of the floor response spectrum of the important locations of nuclear power plants. The high-frequency amplification factor can be effectively used for the seismic verification and seismic performance evaluation of electric equipment which are sensitive to high-frequency earthquakes.