• Title/Summary/Keyword: Assembly cell

Search Result 457, Processing Time 0.023 seconds

Manufacturing Process Improvement of Electrode for PEMFC (공정 효율 향상을 위한 연료전지전극 개발)

  • PARK, SEOK JUNG;LEE, JAE SEUNG;LEE, KI SUB;ROH, BUM WOOK
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.6
    • /
    • pp.547-553
    • /
    • 2015
  • For commercialization of fuel cell electric vehicles, one of the key objectives is to reduce cost of full stack assembly. Regarding Membrane Electrode Assembly, the major issue is to improve fuel cell activation process in the initial Hydrogen Oxidation Reaction and Oxygen Reduction Reaction. In this research, the VD (Vacuum Drying) process has been developed for improvement of activation process. The VD condition is developed by controlling the temperature and degree of vacuum to remove the remaining solvent of electrode. Consequently, the electrode applied to VD process showed the low characteristics such as 3.5% of remaining solvent content and the improved efficiency such as 15% of activation process speed.

TSG101 Physically Interacts with Linear Ubiquitin Chain Assembly Complex (LUBAC) and Upregulates the TNFα-Induced NF-κB Activation

  • Eunju Kim;Hyunchu Cho;Gaeul Lee;Heawon Baek;In Young Lee;Eui-Ju Choi
    • Molecules and Cells
    • /
    • v.46 no.7
    • /
    • pp.430-440
    • /
    • 2023
  • Linear ubiquitin chain assembly complex (LUBAC) is a ubiquitin E3 ligase complex composed of HOIP, HOIL-1L, and SHARPIN that catalyzes the formation of linear/M1-linked ubiquitin chain. It has been shown to play a pivotal role in the nuclear factor (NF)-κB signaling induced by proinflammatory stimuli. Here, we found that tumor susceptibility gene (TSG101) physically interacts with HOIP, a catalytic component of LUBAC, and potentiates LUBAC activity. Depletion of TSG101 expression by RNA interference decreased TNFα-induced linear ubiquitination and the formation of TNFα receptor 1 signaling complex (TNF-RSC). Furthermore, TSG101 facilitated the TNFα-induced stimulation of the NF-κB pathway. Thus, we suggest that TSG101 functions as a positive modulator of HOIP that mediates TNFα-induced NF-κB signaling pathway.

Molecular chaperone as a sophisticated intracellular membership (세포내인자로서의 정교한 기능을 하는 molecular chaperone)

  • 권오유;송민호
    • Journal of Life Science
    • /
    • v.8 no.2
    • /
    • pp.223-233
    • /
    • 1998
  • Discovery of molecular chaperone has stimulate cell biologists and thus made it possible to re-examine the processes whereby proteins achieve and maintain their functional conformations within living cells. the term ‘Molecular chaperone’ was first coined to describe one particular protein involved in the assembly of nucleosomes, but the term has now been extended to describe the function of a wide variety of proteins that assist protein transport across membranes, folding of nascent polypeptide, the assembly and disassembly of oligomeric structures, and the recovery or removal of proteins damaged by various environmental stresses including heat shock. Progress of molecular chaperone research is still limited by the lack of 3-dimensional structural information and detailed interacts with taget proteins in the cell. However, several laboratories around the world are attempting to extend our knowledge on the functions of molecular chaperone, and such efforts seem justified to finally provide the answers to the most burning questions shortly.

  • PDF

Mechanical/Biochemical Analysis of Cell Adhesion Strengthening (세포흡착 거동의 기계적/생화학적 분석)

  • Shin, Heung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1455-1457
    • /
    • 2008
  • Cell adhesion is a coordinated process involving initial binding of integrin receptors to extracellular matrix (ECM), recruitment of adhesion proteins, and focal adhesion assembly. The formation of mechanically stable focal adhesion assembly of cells within surrounding ECM is a key parameter to direct numerous cellular functions including cell migration, differentiation, and apotosis. With current cell adhesion assays, it is difficult to understand contributions of each coordinated event on evolution of cell adhesion strengthening since cells spontaneously spread upon their adhesion to the substrate, thus remodeling their cytoskeletal structure. In this presentation, novel approaches for analysis of cell adhesion strengthening process based on the combination of mechanical device, micro-patterned substrates, and molecular biological techniques will be discussed.

  • PDF

A Study on the Hierarchical Real-time Operation Control and Monitoring for an Flexible Manufacturing System (유연생산시스템의 계층구조적 실시간 운용제어 및 모니터링에 관한 연구)

  • Kim, Jong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.36-43
    • /
    • 1992
  • This paper presents a hierarchical real-time operation control and monitoring scheme of the FMS/CIM center which has been implemented at the Automation and Systems Research Institute of Seoul National University. The hierarchical structure of the whole scheme consists of three lavers. The upper layer is in charge of on-line scheduling, computer network control, shop-floor monitoring and command generation for AGV dispatching, machining, assembly, inspection, set-up, etc. The middle layer has six modules, which are installed in the FMS host computer with the upper layer and run on the multi-tasking basis. Each module is connected to one of six cell controllers distributed in the FMS model plant and transfers operation command down to each cell controller through the Ethernet/TCP-IP local area network. The lower layer is comprised of six cell control software modules for machining cell, assembly cell, inspection cell, set-up stations. AS/RS and AGV. Each cell controller reports the status of the manufacturing facilites to the middle layer as well as ecxecuting the appropriate sequence control of the manufacturing processes.

  • PDF

A Mathematical Model for Converting Conveyor Assembly Line to Cellular Manufacturing

  • Kaku, Ikou;Gong, Jun;Tang, Jiafu;Yin, Yong
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.160-170
    • /
    • 2008
  • This paper proposes a mathematical model for converting conveyor assembly line to cellular manufacturing in complex production environments. Complex production environments refer to the situations with multi-products, variant demand, different batch sizes and the worker abilities varying with work stations and products respectively. The model proposed in this paper aims to determine (1) how many cells should be formatted; (2) how many workers should be assigned in each cell; (3) and how many workers should be rested in shortened conveyor line when a conveyor assembly line should be converted, in order to optimize system performances which are defined as the total throughput time and total labor power. We refer the model to a new production system. Such model can be used as an evaluation tool in the cases of (i) when a company wants to change its production system (usually a belt conveyor line) to a new one (including cell manufacturing); (ii) when a company wants to evaluate the performance of its converted system. Simulation experiments based on the data collected from the previous documents are used to estimate the marginal impact that each factor change has had on the estimated performance improvement resulting from the conversion.

Agile and Intelligent Manufacturing System for a Subminiature Lens Assembly Automation (초소형 렌즈 모듈의 조립 자동화를 위한 지능형 민첩 생산시스템)

  • Kim W.;Kang H.S.;Cho Y.J.;Jung J.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.169-172
    • /
    • 2005
  • Tiny camera module using in modern cellular phone requires precise assembly processes. Higher camera resolution and more functions such as zoom lens make the number of camera parts bigger. As market grows rapidly, automatic assembly process is required. However, diverse product line and short life cycle make it difficult. To attack this, a flexible and expandable lens assembly system is proposed. For the fast manufacturing line formation, modular concept is adopted. Also each module is designed to have intelligence to save system formation time. The assembly system is built up on the standard flat-form which provides vibration free base, air and electric supply, controllers, etc. Futhermore, the assembly cell has the capability of handling tiny, thin, or transparent parts which are very difficult to align with vision.

  • PDF

Knockdown of Archvillin by siRNA Inhibits Myofibril Assembly in Cultured Skeletal Myoblast

  • Lee, Yeong-Mi;Kim, Hyun-Suk;Choi, Jun-Hyuk;Choi, Jae-Kyoung;Joo, Young-Mi;Ahn, Seung-Ju;Min, Byung-In;Kim, Chong-Rak
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.251-261
    • /
    • 2007
  • A myofiber of skeletal muscle is composed of myofibrils, sarcolemma (plasma membrane), and constameres, which anchor the myofibrils to the sarcolemma. Achvillin is a recently identified F-actin binding muscle protein, co-isolates with dystrophin and caveolin-3 in low-density sarcolemma of striated muscle, and colocalizes with dystrophin at costameres, the specialized adhesion sites in muscle. Archvillin also binds to nebulin and localizes at myofibrillar Z-discs, the lateral boundaries of the sarcomere in muscle. However other roles of archvillin on the dynamics of myofibrillogenesis remain to be defined. The goal of this study is, by using siRNA-mediated gene silencing technique, to investigate the effect of archvillin on the dynamics of myofibrillogenesis in cell culture of a mouse skeletal myogenic cell line (C2C12), where presumptive myoblasts withdraw from the cell cycle, fuse, undergo de novo myofibrillogenesis, and differentiate into mature myotubes. The roles of archvillin in the assembly and maintenance of myofibril and during the progression of myofibrillogenesis induced in skeletal myoblast following gene silencing in the cell culture were investigated. Fluorescence microscopy demonstrated that the distribution of archvillin was changed along the course of myofibril assembly with nebulin, vinculin and F-actin and then located at Z-lines with nebulin. Fluorescence microscopy demonstrated that knockdown of mouse archvillin expression led to an impaired assembly of new myofibrillar clusters and delayed fusion and myofibrillogenesis although the mouse archvillin siRNA did not affect those expressions of archvillin binding proteins, such as nebulin and F-actin. This result is corresponded with that of RT-PCR and western blots. When the perturbed archvillin was rescued by co-transfection with GFP or Red tagged human archvillin construct, the inhibited cell fusion and myotube formation was recovered. By using siRNA technique, archvillin was found to be involved in early stage of myofibrillogenesis. Therefore, the current data suggest the idea that archvillin plays critical roles on cell fusion and dynamic myofibril assembly.

  • PDF

Depletion of the Pre-RC Proteins Induces Chk1/Chk2 Independent Checkpoint Responses and Apoptotic Cell Death in HeLa Cells

  • Im, Jun-Sub;Lee, Joon-Kyu
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.129-134
    • /
    • 2007
  • The initiation of eukaryotic DNA replication requires assembly of the pre-replicative complex (Pre-RC) through the concerted action of Orc, Cdc6, Cdt1 and Mcm2-7 complex during G1 phase. The pre-RC assembly licenses individual replication origins for the initiation of DNA replication and sufficient number of the pre-RC is essential for proper progression of S phase. However, it is not well known how cells recognize the completion of the pre-RC assembly before G1-S transition. In order to understand the cellular responses to the defects in pre-RC assembly, we depleted the known components of pre-RC proteins using the small interference RNAs in HeLa cells. Although the defects of pre-RC assembly by the depletion of the pre-RC proteins such as Orc2, Cdt1, Mcm2 & Mcm10 did not elicit the activation of Chk1- or Chk2-dependent checkpoint pathways, these cells still showed significant decrease in the cellular level of Cdc25A proteins. These results suggests that a novel checkpoint pathway exist in HeLa cells, which is not dependent upon Chk1 or Chk2 proteins and play essential roles in the cellular responses to the defects in the pre-RC assembly. Also, among those four proteins tested in this study, the depletion of Mcm10 and Cdt1 proteins significantly increased the apoptotic cell death in HeLa cells, suggesting that these proteins not only play roles in the pre-RC assembly, but also are involved in the checkpoint responses to the defects in the pre-RC assembly.