• Title/Summary/Keyword: Assembly Work

Search Result 515, Processing Time 0.023 seconds

A Study for Musculoskeletal Disorders of Assembly Line Workers

  • Kim, Dae-Sig
    • Journal of Industrial Convergence
    • /
    • v.3 no.2
    • /
    • pp.73-84
    • /
    • 2005
  • Musculoskeletal Disorders are usually caused or aggravated by poor work processes and unsuitable working conditions - that involve repetitive or forceful movements or the maintenance of constrained or awkward postures. The condition is characterized by discomfort and persistent pain. Case and Demographic Characteristics for Work-related Injuries and Illnesses Involving Days Away From Work, 2003. U.S" was examined. Causes of musculoskeletal disorders for assembly line workers were carpal tunnel syndrome(CTS), tendonitis, low back pain, and occupational stress. Recommendations of improvement for productivity are redesign of working conditions, exercise, prevent of musculoskeletal disorders and avoiding stress.

  • PDF

Exposure Characteristics for Chemical Substances and Work Environmental Management in the Semiconductor Assembly Process (반도체 조립공정의 화학물질 노출특성 및 작업환경관리)

  • Park, Seung-Hyun;Park, Hae Dong;Shin, In Jae
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.272-280
    • /
    • 2014
  • Objectives: The purpose of this study was to evaluate the characteristics of worker exposure to hazardous chemical substances and propose the direction of work environment management for protecting worker's health in the semiconductor assembly process. Methods: Four assembly lines at two semiconductor manufacturing companies were selected for this study. We investigated the types of chemicals that were used and generated during the assembly process, and evaluated the workers' exposure levels to hazardous chemicals such as benzene and formaldehyde and the current work environment management in the semiconductor assembly process. Results: Most of the chemicals used at the assembly process are complex mixtures with high molecular weight such as adhesives and epoxy molding compounds(EMCs). These complex mixtures are stable when they are used at room temperature. However workers can be exposed to volatile organic compounds(VOCs) such as benzene and formaldehyde when they are used at high temperature over $100^{\circ}C$. The concentration levels of benzene and formaldehyde in chip molding process were higher than other processes. The reason was that by-products were generated during the mold process due to thermal decomposition of EMC and machine cleaner at the process temperature($180^{\circ}C$). Conclusions: Most of the employees working at semiconductor assembly process are exposed directly or indirectly to various chemicals. Although the concentration levels are very lower than occupational exposure limits, workers can be exposed to carcinogens such as benzene and formaldehyde. Therefore, workers employed in the semiconductor assembly process should be informed of these exposure characteristics.

A Study on the Determination of Optimum Cycle Time for Assembly Line Balancing (Line Balancing을 위한 최적 Cycle Time의 결정방법)

  • 이근부
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.35-39
    • /
    • 1980
  • Although the product line produces a large volume of goods in a relatively short time, once the product line is established there are numerous problems that arise in connection with this product line. One of these problems is the problem of balancing operations or stations in terms of equal times and in terms of the times required to meet the desered rate of production. The objective of line balancing is minimizing the idle time on the line for all combinations of work stations subject to certain restrictions. In general, there are two types of line-balancing situations : (1) assembly line balancing and (2) fabrication line balancing. Two approaches to the assembly line balancing problem have been used. The first assumes a filed cycle time and find the optimum number of work stations. The second approach to the assembly line balancing problem assumes the number of work stations to be fixed and systematically coverages on a solution which minimizes the total delay time by minimizing the cycle time. Here the cycle time is determined by the longest station time. In this paper, by using the second approach method, a general mathematical model, problem solutions, and computer program for the assembly line balancing problem is presented. Data used is obtained from the company which has been confronted with many problems arising in connection with their assembly line.

  • PDF

Mixed Model Assembly Line Balancing with the Related Task Consideration (관련작업을 고려한 혼합모델 조립라인 밸런싱)

  • 김여근;곽재승
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.18 no.2
    • /
    • pp.1-22
    • /
    • 1993
  • This paper deals with the problem of mixed model assembly line balancing. In mixed model assembly lines, tsks should be assigned to stations in such a manner that all stations have approximately the same amount of work on a production cycle basis. Further in balancing assembly lines, the related tasks, the performing task side and the team tasks should be considered to improve work methods, to give more job satisfaction to workers, and to allow greater flexibility in the design of assembly lines. In this paper, the heuristic dispatch assignment rule is developed to assign evenly tasks of each model to all stations. The heuristic method based on the assignment rule developed is presented for mixed model assembly line balancing with the considerations of the related tasks, the performing task side, and the team tasks. The proposed method is analyzed, and compared with other methods for line balancing.

  • PDF

A New Mathematical Formulation for the Classical Assembly Line Balancing Problem

  • Shin, Doo-Young;Lee, Daeyong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.2
    • /
    • pp.217-228
    • /
    • 1994
  • This paper presents a new integer formulation (Type III ALB) for a single model assembly line balancing problem. The objective of the formulation is to minimize the total idle time, which is defined as the product of the number of work stations and the cycle times minus the total work content. This formulation considers currently existing Type I (minimizing the number of work stations for a given cycle time) and type II (minimizing the cycle time for a given number of work stations) formulations as its special cases and provides the global minimum solutions of the cycle time and the number of work stations. This information would be of great value to line designers involved in designing new assembly lines and rebalancing old lines under flexible conditions. Solution methods based on combination of Type I and Type II approaches are also suggested and compared.

  • PDF

Sequencing the Mixed Model Assembly Line with Multiple Stations to Minimize the Total Utility Work and Idle Time

  • Kim, Yearnmin;Choi, Won-Joon
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • This paper presents a fast sequencing algorithm for a mixed model assembly line with multiple workstations which minimize the total utility work and idle time. We compare the proposed algorithms with another heuristic, the Tsai-based heuristic, for a sequencing problem that minimizes the total utility works. Numerical experiments are used to evaluate the performance and effectiveness of the proposed algorithm. The Tsai-based heuristic performs best in terms of utility work, but the fast sequencing algorithm performs well for both utility work and idle time. However, the computational complexity of the fast sequencing algorithm is O (KN) while the Tsai-based algorithm is O (KNlogN). Actual computational time of the fast sequencing heuristic is 2-6 times faster than that of the Tsai-based heuristic.

Repetitive Strain Injury on Automobile Assembly Process and Alexander Technique

  • Dae Sig, Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.2
    • /
    • pp.67-78
    • /
    • 2004
  • In the trim line of an automobile assembly process, 52.9% of the subjects complained the shoulder and low back pain simultaneously. The Alexander Technique is an educational method which shows people how they are misusing their bodies and how their daily habits of work can be harmful. It also teaches people how to avoid work habits which create excessive amounts of static work and how to reduce the amount of unnecessary muscular force they are applying to their bodies. The purpose of this paper is to investigate the importance of repetitive strain injury on automobile assembly line process and contribute reducing the repetitive strain injury through Alexander Technique.

Prevalence of Work-related Musculoskeletal Disorders in Auto-mission Assembly Plant Workers

  • Min, Seung Nam;Subramaniyam, Murali;Kim, Dong-Joon;Park, Se Jin;Lee, Heeran;Lee, Ho Sang;Kim, Jung Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.293-302
    • /
    • 2015
  • Objective: This study was performed to investigate the prevalence of musculoskeletal disorders in auto workers of a mission assembly plants. Background: Most studies of musculoskeletal disorders have used car assembly line workers as their participants. However, little research has been done on musculoskeletal disorders afflictions of mission assembly line workers. Method: Through a focus group interview with an ergonomist and a manager at a mission assembly plant site, a questionnaire was developed for musculoskeletal disorders. The questionnaire consisted of five parts, demographic factors, musculoskeletal disorder symptoms, and musculoskeletal disorder experiences; 137 workers participated in this survey. The surveys were analyzed by correlation and Chi-squared analysis. Results: Musculoskeletal disorder symptoms and serious pain were reported in the neck, shoulder, back, and fingers. These problems were statistically related to various demographic factors, such as age, stature, stretching, and work satisfaction. Conclusion: Treatment of musculoskeletal disorders should consider the workers' traits. If there is no specific cause of the pain, developing stretches and exercises before and after work should be applied to prevent musculoskeletal disorders. Application: The results of this study can be used to develop guidelines to prevent injury in auto workers at mission assembly plants.

A Scheduling Strategy for Reducing Set-up Time and Work-In-Process in PCB Assembly Line (PCB조립 라인의 준비 시간 단축 및 재공품 감소를 위한 스케줄링 전략)

  • 이영해;김덕한;전성진
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.1
    • /
    • pp.25-49
    • /
    • 1997
  • Printed circuit board (PCB) assembly line configuration is characterized by very long set-up times and high work in process (WIP) inventory level. The scheduling method can significantly reduce the set-up times and WIP inventory level. Greedy sequence dependent scheduling (GSDS) method is proposed based on the current methods. The proposed method is compared with the current method in terms of three performance measures: line throughput, average WIP inventory level, and implementation complexity.

  • PDF

Application of Bucket Brigades in Assembly Cells for Self Work Balancing (자율적인 밸런싱을 실현하는 Bucket Brigade 기반의 조립셀 운영방식)

  • Koo, Pyung-Hoi
    • IE interfaces
    • /
    • v.22 no.2
    • /
    • pp.144-152
    • /
    • 2009
  • Assembly line has been recognized as an efficient production system in mass production. However, the recent production environment characterized as mass customization urges production managers to transform a long assembly line to a number of short assembly cells. To maximize the utilization of resources in an assembly cell, it is important to have the line balanced. This paper presents a bucket brigade-based assembly cell. Bucket brigade is a way of coordinating workers who progressively perform a set of assembly operations on a flow line. Each worker follows a simple rule: perform assembly operations on a product until the next worker downstream takes it over; then go back to the previous worker upstream to take over a new assembly job. In this way, the line balances itself. The bucket brigade assembly cell is analyzed and compared with traditional assembly lines and general assembly cells. The paper also discusses some prerequisite requirements and limitations when the bucket brigade assembly cells are employed.