• Title/Summary/Keyword: Assembly Process Planning

Search Result 99, Processing Time 0.025 seconds

A Simulation-Based Capacity Analysis of a Block-Assembly Process in Ship Production Planning (시뮬레이션을 이용한 블록조립 공정 능력 분석)

  • Song, Young-Joo;Lee, Dong-Kun;Choe, Sung-Won;Woo, Jong-Hun;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.1
    • /
    • pp.78-86
    • /
    • 2009
  • A capacity calculation and process analysis is a very important part for the entire ship production planning. Ship's production plan is set up with a concept that the product is produced based on the capacity achievable by the processes while general manufacturing sets up the production plan based on product lead-time. Therefore, in case the calculation of capacity for each process of shipbuilding yard is different from actual conditions, a series of production plan - ship table composition, dual schedule plan and execution schedule plan, etc - may accumulate errors, lose reliability of planning information and cause heavy cost deficit in this course. In particular, in case of new shipbuilding yard, stocks between processes are built up and half blocks are not supplied in timely manner, and that is sometimes due to the clumsiness of the operator but it is more often because of the capacity to execute each process is not logically calculated. Therefore, this paper presents the process to calculate the assembly leadtime and assembly process capacity for shipbuilding yard assembly factory. This paper calculated the block type for calculation of assembly lead time based on block DAP(detailed assembly procedure), and introduced cases that calculate production capacities by assembly surface plate by considering the surface plate occupied area of the blocks that change depending on assembly field area and assembly processes through assembly simulation.

Process Planning in Flexible Assembly Systems Using a Symbiotic Evolutionary Algorithm (공생 진화알고리듬을 이용한 유연조립시스템의 공정계획)

  • Kim, Yeo-Keun;Euy, Jung-Mi;Shin, Kyoung-Seok;Kim, Yong-Ju
    • IE interfaces
    • /
    • v.17 no.2
    • /
    • pp.208-217
    • /
    • 2004
  • This paper deals with a process planning problem in the flexible assembly system (FAS). The problem is to assign assembly tasks to stations with limited working space and to determine assembly routing with the objective of minimizing transfer time of the products among stations, while satisfying precedence relations among the tasks and upper-bound workload constraints for each station. In the process planning of FAS, the optimality of assembly routing depends on tasks loading. The integration of tasks loading and assembly routing is therefore important for an efficient utilization of FAS. To solve the integrated problem at the same time, in this paper we propose a new method using an artificial intelligent search technique, named 2-leveled symbiotic evolutionary algorithm. Through computational experiments, the performance of the proposed algorithm is compared with those of a traditional evolutionary algorithm and a symbiotic evolutionary algorithm. The experimental results show that the proposed algorithm outperforms the algorithms compared.

The Integrated Process Planning and Scheduling in Flexible Assembly Systems using an Endosymbiotic Evolutionary Algorithm (내공생 진화알고리듬을 이용한 유연조립시스템의 공정계획과 일정계획의 통합)

  • Song, Won-Seop;Shin, Kyoung-Seok;Kim, Yeo-Keun
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.20-27
    • /
    • 2004
  • A flexible assembly system (FAS) is a production system that assembles various parts with many constraints and manufacturing flexibilities. This paper presents a new method for efficiently solving the integrated process planning and scheduling in FAS. The two problems of FAS process planning and scheduling are tightly related with each other. However, in almost all the existing researches on FAS, the two problems have been considered separately. In this research, an endosymbiotic evolutionary algorithm is adopted as methodology in order to solve the two problems simultaneously. This paper shows how to apply an endosymbiotic evolutionary algorithm to solving the integrated problem. Some evolutionary schemes are used in the algorithm to promote population diversity and search efficiency. The experimental results are reported.

Ship block assembly sequence planning considering productivity and welding deformation

  • Kang, Minseok;Seo, Jeongyeon;Chung, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.450-457
    • /
    • 2018
  • The determination of assembly sequence in general mechanical assemblies plays an important role in terms of manufacturing cost, duration and quality. In the production of ships and offshore plants, the consideration of productivity factors and welding deformation is crucial in determining the optimal assembly sequence. In shipbuilding and offshore industries, most assembly sequence planning has been done according to engineers' decisions based on extensive experience. This may result in error-prone planning and sub-optimal sequence, especially when dealing with unfamiliar block assemblies composed of dozens of parts. This paper presents an assembly sequence planning method for block assemblies. The proposed method basically considers geometric characteristics of blocks to determine feasible assembly sequences, as well as assembly process and productivity factors. Then the assembly sequence with minimal welding deformation is selected based on simplified welding distortion analysis. The method is validated using an asymmetric assembly model and the results indicate that it is capable of generating an optimal assembly sequence.

Computer Aided Process Planning of Block Assembly using an Expert System (전문가 시스템을 이용한 블록조립 공정계획)

  • 신동목
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.67-71
    • /
    • 2003
  • This paper presents the use of an evert system to automate process planning of block assembly, a task that is usually completed manually. In order to determine the sequence of assembly operation, a search method guided by rules, such as merging of related operations, grouping of similar operations, and precedence rules based on know-hows and geometrical reasoning, is used. In this paper, the expert system developed is explained in detail regarding a global database, control strategies, and rule bases. For verification purposes, the evert system has been applied to simple examples. Since the rule bases are isolated from the inference engine in the developed system, it is easy to add more rules in the future.

A Multiobjective Process Planning of Flexible Assembly Systems with Evolutionary Algorithms (진화알고리듬을 이용한 유연조립시스템의 다목적 공정계획)

  • Shin, Kyoung Seok;Kim, Yeo Keun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.3
    • /
    • pp.180-193
    • /
    • 2005
  • This paper deals with a multiobjective process planning problem of flexible assembly systems(FASs). The FAS planning problem addressed in this paper is an integrated one of the assignment of assembly tasks to stations and the determination of assembly routing, while satisfying precedence relations among the tasks and flexibility capacity for each station. In this research, we consider two objectives: minimizing transfer time of the products among stations and absolute deviation of workstation workload(ADWW). We place emphasis on finding a set of diverse near Pareto or true Pareto optimal solutions. To achieve this, we present a new multiobjective coevolutionary algorithm for the integrated problem here, named a multiobjective symbiotic evolutionary algorithm(MOSEA). The structure of the algorithm and the strategies of evolution are devised in this paper to enhance the search ability. Extensive computational experiments are carried out to demonstrate the performance of the proposed algorithm. The experimental results show that the proposed algorithm is a promising method for the integrated and multiobjective problem.

Development of Assembly Sequence Generating System Based on Parts Liaison Analyzing (부품 연관 관계 분석 기반의 조립 순서 생성 시스템 개발)

  • Park, Hong-Seok;Park, Jin-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Nowadays in order to perform assembly process planning by using CAPP (Computer Aided Process Planning), researches to generate the assembly sequence automatically have come under constant interest by many researchers and they are devoted to optimize the assembly sequence. In this paper, the product on analyzing the relationship between assembled parts via contacting information such as common area, automatically based on the liaison graph of the product. To verify the validness and efficiency of the approach, the simple product is tested in the experimental way.

Implementation of an Assembly System for Automobile Side Panel Based on Digital Manufacturing Technologies (디지털 제조기술 기반의 차체 사이드패널 조립시스템 구현)

  • Park, Hong-Seok;Choi, Hung-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.68-77
    • /
    • 2006
  • Nowadays, the increasing global competition forces automobile manufacturer to increase quality and to reduce the cost and time for manufacturing planning. To solve these problems, automobile manufacturers try to apply digital manufacturing technologies. In this paper, a concept of method for planning the digital assembly system is proposed. Based on the requirements of assembly tasks obtained through product analysis, the function and sequence modeling for assembly process is executed using the IDEF0 and UML model. For implementation of digital assembly system, the selected components are modeled by using 3D CAD tools. According to the system configuration strategy, lots of the alternative solutions for the assembly system are generated. Finally, the optimal assembly system is chosen by the evaluation of the alternative solutions with TOPSIS(Technique for Order Preference by Similarity to Ideal Solution) method. According to proposed procedure, digital laser welding system is implemented in DELMIA.

A Knowledge-based System for Assembly Process Planning (조립 공정계획을 위한 지식기반 시스템)

  • Park, Hong-Seok;Son, Seok-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.29-39
    • /
    • 1999
  • Many industrial products can be assembled in various sequences of assembly operations. To save time and cost in assembly process and to increase the quality of products, it is very important to choose an optimal assembly sequence. In this paper, we propose a methodology that generates an optimal assembly sequence by using the knowledge of experts. First, a product is divided into several sub-assemblies. Next, the disassembly sequences of sub-assembly are generated using disassembly rules and special information can be extracted through the disassembly process. By combining every assembly sequence of sub-assemblies, we can generate all the possible assembly sequences of a product. Finally, the expert system evaluates all the possible assembly sequences and finds an optimal assembly sequence. It can be achieved under consideration of the parameters such as assembly operation, tool change, safety of part. basepart location, setup change, distance, and orientation. The developed system is applied to UBR(Unit Bath Room) example.

  • PDF