• Title/Summary/Keyword: Assembly Modeling

Search Result 304, Processing Time 0.026 seconds

Computer Aided Design of a Pattern and Risers for Casting Processes(I) (주형의 전산기 원용 설계(I) -목형과 압탕부의 설계-)

  • 박종천;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.72-78
    • /
    • 1990
  • An interactive computer program has been developed to design a pattern and risers for the production of castings of high quality. In our system, the user models the shape of a final product by using the system's modeling capability, a pattern is generated in a three dimensional model by eliminating the holes and adding shrinkage allowances and drafts, the proper riser is created automatically, and they are united together to yield the three dimensional model of the portion of a mold assembly. The mold can be completed after the runners and the gating systems are designed, modeled, and united, which will be described in part 2 of this work. The unique feature of this work is a realization of an automatic design of the pattern and risers by integrating the modeling capabilities and the design equations used in the real practice.

3D Contents Based Work Process Simulation Development (3D 콘텐츠 기반 작업 프로세스 시뮬레이션 개발)

  • Kim, Gui-Jung;Han, Jung-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.7
    • /
    • pp.30-37
    • /
    • 2011
  • In this paper we implemented 3D contents based work process simulation for 3D view contents. For this the method of 3D view technique is explained. The automobiles and PC assembly processes according to the virtual scenario showed the technique which assists workers through 3D view. Also for 3D information visualization, max script of contents modeling functions using 3D MAX was developed. The functions are designed to customize coordinate, material edit on modeling, rendering, and 3D object files with max script.

Product Database Modeling for Collaborative Product Development

  • Do, Nam-Chul;Kim, Hyun;Kim, Hyoung-Sun;Lee, Jae-Yeol;Lee, Joo-Haeng
    • Proceedings of the CALSEC Conference
    • /
    • 2001.08a
    • /
    • pp.591-596
    • /
    • 2001
  • To deliver new products to market in a due time, companies often develop their products with numerous partners distributed around the world. Internet technologies can provide a cheap and efficient basis of collaborative product development among distributed partners. This paper provides a framework and its product database model that can support consistent product data during collaborative product development. This framework consists of four components for representing consistent product structure: the product configuration, assembly structure, multiple representations and engineering changes. A product database model realizing the framework is designed and implemented as a system that supports collaborative works in the areas of product design and technical publication. The system enables participating designers and technical publishers to complete their tasks with shared and consistent product data. It also manages the propagation of engineering changes among different representations for individual participants. The Web technologies introduced in this system enable participants to easily access and operate shared product data in a standardized and distributed computing environment.

  • PDF

Homology modeling of HSPA1L - METTL21A interaction

  • Lee, Seung-Jin;Cho, Art E.
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.90-95
    • /
    • 2016
  • Heat Shock 70kDa Protein 1-Like(HSPA1L)는 Heat-shock protein70(HSP70) family에 속하는 chaperone protein으로 polypeptide folding, assembly, protein degradation 등 다양한 biological processes에 관여하고 있다. HSPA1L은 human methyltransferase-like protein 21A(METTL21A)에 의해 lysine residue에 methylation이 일어나게 되는데, 암세포에서 일반적인 HSPA1L은 주로 세포질에서 발견되는 반면 methylated HSPA1L의 경우 주로 핵에서 발견이 됨으로써 HSPA1L methylation이 암 세포 성장에 중요할 역할을 할 것이라 추측되며 anti-cancer drug target으로 주목 받고 있다. 하지만 현재 HSPA1L의 구조가 부분적으로만 밝혀져 있어 HSPA1L와 METTL21A가 어떤 residue들이 interaction 하여 binding을 하는지에 대해서 아직 밝혀 지지 않았다. 이로 인해 anti-cancer drug target으로서의 연구에 제한이 있다. 이번 연구에서는 homology modeling(Galaxy-TBM, Galaxy-refine)을 통해 HSPA1L 전체 구조를 밝혀 낸 후, HSPA1L 와 METTL21A를 protein-protein docking을 통해 binding pose 예측을 하였다. 이러한 binding pose를 protein interaction analysis하여 HSPA1L과 METTL21A binding에 관여하는 중요 residue들을 밝혀 냈다. 이러한 structural information은 methylated HSPA1L와 암 세포 성장간의 연관성, 더 나아가 anti-cancer drug 개발로 까지도 이어 질 수 있을 것이라 생각한다.

  • PDF

Verification of Reduced Order Modeling based Uncertainty/Sensitivity Estimator (ROMUSE)

  • Khuwaileh, Bassam;Williams, Brian;Turinsky, Paul;Hartanto, Donny
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.968-976
    • /
    • 2019
  • This paper presents a number of verification case studies for a recently developed sensitivity/uncertainty code package. The code package, ROMUSE (Reduced Order Modeling based Uncertainty/Sensitivity Estimator) is an effort to provide an analysis tool to be used in conjunction with reactor core simulators, in particular the Virtual Environment for Reactor Applications (VERA) core simulator. ROMUSE has been written in C++ and is currently capable of performing various types of parameter perturbations and associated sensitivity analysis, uncertainty quantification, surrogate model construction and subspace analysis. The current version 2.0 has the capability to interface with the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) code, which gives ROMUSE access to the various algorithms implemented within DAKOTA, most importantly model calibration. The verification study is performed via two basic problems and two reactor physics models. The first problem is used to verify the ROMUSE single physics gradient-based range finding algorithm capability using an abstract quadratic model. The second problem is the Brusselator problem, which is a coupled problem representative of multi-physics problems. This problem is used to test the capability of constructing surrogates via ROMUSE-DAKOTA. Finally, light water reactor pin cell and sodium-cooled fast reactor fuel assembly problems are simulated via SCALE 6.1 to test ROMUSE capability for uncertainty quantification and sensitivity analysis purposes.

Analysis of surface design and panel optionsfor freeform building

  • Min Gyu Park;Han Guk Ryu
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.553-557
    • /
    • 2013
  • Roof and exterior wall are designed and constructed in a manner that prevents the accumulation of water within the wall and roof assembly in the formal building. However, in a freeform building there is no clear distinction between exterior wall and roof. In other words, the exterior walls and roof systems of the freeform building are integrated as a surface, unlike the formal building envelope. Therefore, freeform architecture needs a systemized envelope design method to perform functions of exterior wall and roof. However, in many cases, construction methods for roof and exterior wall are applied to freeform buildings without necessary alterations, which lead to incomplete design, leakage, cracks and other problems. Freeform architecture is thus designed and constructed differently from formal buildings. In order to more easily and inexpensively actualize freeform architecture, Building Information Modeling (hereinafter referred to as BIM) has recently been applied in the construction industry. The studies and case analysis are not sufficient to identify the implications and contributions of freeform buildings in future similar projects. Therefore, this research will study design and construction methods for freeform surfaces. This study attempts to analyze the pros and cons of each method for the concrete surface frame, and then presents the panel options for envelope system of the freeform architecture.

  • PDF

Multiscale Modeling and Simulation of Direct Methanol Fuel Cell (직접메탄올 연료전지의 Multiscale 모델링 및 전산모사)

  • Kim, Min-Su;Lee, Young-Hee;Kim, Jung-Hwan;Kim, Hong-Sung;Lim, Tae-Hoon;Moon, Il
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.29-39
    • /
    • 2010
  • This study focuses on the modeling of DMFC to predict the characteristics and to improve its performance. This modeling requires deep understanding of the design and operating parameters that influence on the cell potential. Furthermore, the knowledge with reference to electrochemistry, transport phenomena and fluid dynamics should be employed for the duration of mathematical description of the given process. Considering the fact that MEA is the nucleus of DMFC, special attention was made to the development of mathematical model of MEA. Multiscale modeling is comprised of process modeling as well as a computational fluid dynamics (CFD) modeling. The CFD packages and process simulation tools are used in simulating the steady-state process. The process simulation tool calculates theelectrochemical kinetics as well as the change of fractions, and at the same time, CFD calculates various balance equations. The integrated simulation with multiscal modeling explains experimental observations of transparent DMFC.

A Study on the Ultimate Strength Behavior according to Modeling Range at the Stiffened Plate (선체보강판의 모델링범위에 따른 최종강도거동에 관한 연구)

  • Park Jo-Shin;Ko Jae-Yong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.11a
    • /
    • pp.137-141
    • /
    • 2004
  • Ship structures are basically an assembly of plate elements and the load-carrying capacity or the ultimate strength is one of the most important criteria for safety assessment and economic design. Also, Structural elements making up ship plated structures do not work separately, resulting in high degree of redundancy and complexity, in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy needed and the degree of complexity of the analysis to be used. On this study, to investigate effect of modeling range, the finite element method are used and their results are compared varying the analysis ranges. The model has been selected from bottom panels of large merchant ship structures. For FEA, three types of structural modeling are adopted in terms of the extent of the analysis. The purpose of the present study is to numerically calculate the characteristics of ultimate strength behavior according to the analysis ranges of stiffened panels subject to uniaxial compressive loads.

  • PDF

Numerical Modeling of Large Triaxial Compression Test with Rockfill Material Considering 3D Grain Size Distribution (3차원 입도분포를 고려한 락필재료의 대형삼축압축시험 수치모델링)

  • Noh, Tae Kil;Jeon, Je Sung;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.55-62
    • /
    • 2012
  • In this research, the algorithm for simulating specific grain size distribution(GSD) with large diameter granular material was developed using the distinct element analysis program $PFC^{3D}$(Particle Flow Code). This modeling approach can generate the initial distinct elements without clump logic or cluster logic and prevent distinct element from escaping through the confining walls during the process. Finally the proposed distinct element model is used to simulate large triaxial compression test of the rockfill material and we compared the simulation output with lab test results. Simulation results of Assembly showed very well agreement with the GSD of the test sample and numerical modeling of granular material would be possible for various stress conditions using this application through the calibration.

Development of camera caliberation technique using neural-network (신경회로망을 이용함 카메라 보정기법 개발)

  • 한성현;왕한홍;장영희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1617-1620
    • /
    • 1997
  • This paper describes the camera caliberation based-neural network with a camera modeling that accounts for major sources of camera distortion, namely, radial, decentering, and thin prism distortion. Radial distoriton causes an inward or outward displacement of a given image point from its ideal location. Actual optical systems are subject to various degrees of decentering, that is the optical centers of lens elements are not strictly collinear. Thin prism distortion arises from imperfection in lens design and manufacturing as well as camera assembly. It is our purpose to develop the vision system for the pattern recognition and the automatic test of parts and to apply the line of manufacturing. The performance of proposed camera aclibration is illustrated by simulation and experiment.

  • PDF