• Title/Summary/Keyword: Assembly Constraints

Search Result 108, Processing Time 0.031 seconds

A study on the switching character of MOS-GTO and the design of gate drive circuit (MOS-GTO의 스위칭 특성과 Gate Drive 회로 설계에 관한 연구)

  • Roh, Jin-Eep;Seong, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.231-233
    • /
    • 1991
  • This paper discribes a study on the switching character of MOS-GTO and the design of gate drive circuit. Chopping power supply converter, synchronious and asyncronious motor speed adjustment, inverter, etc., needs low drive energy "high frequency" switches. To fulfill these need, switches must have rapid switching time and insulated gate control. MOS-GTO structure is well suited to these constraints. The power switch is serial installation of a GTO thyrister and a MOS Transistor. The gate of the GTO is linked to positive pole of the cascode structure via a MOS high voltage transistor and ground via a transient absorber diode. This high performance MOS-GTO assembly considerably increases the strength which facilitate the drive of GTO thyristers.

  • PDF

An Algorithm for Adjusting Inserting Position and Traveling Direction of a Go-No Gauge Inspecting Eggcrate Assemblies (에그크레이트 검사를 위한 Go-No 게이지의 삽입위치 및 이동방향 보정 알고리즘)

  • 이문규;김채수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.152-158
    • /
    • 2003
  • A machine-vision guided inspection system with go-no gauges for inspecting eggcrate assemblies in steam generators is considered. To locate the gauge at the right place, periodic corrective actions for its position and traveling direction are required. We present a machine vision algorithm for determining inserting position and traveling direction of the go-no gauge. The overall procedure of the algorithm is composed of camera calibration, eggcrate image preprocessing, grid-height adjustment, intersection point estimation between two intersecting grids, and adjustment of position and traveling direction of the gauge. The intersection point estimation is performed by using linear regression with a constraint. A test with a real eggcrate specimen shows the feasibility of the algorithm.

A Branch-and-Bound Algorithm for U-line Line Balancing (U라인 라인밸런싱을 위한 분지한계법)

  • 김여근;김재윤;김동묵;송원섭
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.2
    • /
    • pp.83-101
    • /
    • 1998
  • Assembly U-lines are increasingly accepted in industry, especially just-in-time production systems, for the efficient utilization of workforce. In this paper, we present an integer programming formulation and a branch-and-bound method for balancing the U-line with the objective of minimizing the number of workstations with a fixed cycle time. In the mathematical model, we provide the method that can reduce the number of variables and constraints. The proposed branch-and-bound method searches the optimal solution based on a depth-first-search. To efficiently search for the optimal solutions to the problems, an assignment rule is used in the method. Bounding strategies and dominance rules are also utilized. Some problems require a large amount of computation time to find the optimal solutions. For this reason. some heuristic fathoming rules are also proposed. Extensive experiments with test-bed problems in the literature are carried out to show the performance of the proposed method. The computational results show that our method is promising in solution quality.

  • PDF

A Mathematical Programming Approach for Block Storage Problem in Shipbuilding Process (수리 모형을 이용한 조선 산업에서의 블록 적치장 최적 운영 계획 도출)

  • Ha, Byung-Hyun;Son, Jung-Ryoul;Cho, Kyu Kab;Choi, Byung-Cheon
    • Korean Management Science Review
    • /
    • v.30 no.3
    • /
    • pp.99-111
    • /
    • 2013
  • This paper studies the scheduling problem of storing and retrieving assembly blocks in a temporary storage yard. The objective is to minimize the number of relocations of blocks while the constraints for storage and retrieval time windows are satisfied. We present an integer programming model based on multi-commodity network flows, and the three revised models based on the properties of the problem. We show that the revised models are more efficient than the generic model through the numerical experiments.

Automatic Registration of Two Parts using Robot with Multiple 3D Sensor Systems

  • Ha, Jong-Eun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1830-1835
    • /
    • 2015
  • In this paper, we propose an algorithm for the automatic registration of two rigid parts using multiple 3D sensor systems on a robot. Four sets of structured laser stripe system consisted of a camera and a visible laser stripe is used for the acquisition of 3D information. Detailed procedures including extrinsic calibration among four 3D sensor systems and hand/eye calibration of 3D sensing system on robot arm are presented. We find a best pose using search-based pose estimation algorithm where cost function is proposed by reflecting geometric constraints between sensor systems and target objects. A pose with minimum gap and height difference is found by greedy search. Experimental result using demo system shows the robustness and feasibility of the proposed algorithm.

Modeling of Context-aware Interaction in U-campus Environment

  • Choo, Moon-Won;Choi, Young-Mee;Chin, Seong-Ah
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.799-806
    • /
    • 2007
  • The prototypical smart environment to support the context-aware interactions between user and ubiquitous campus environment based on multi-agent system paradigm is proposed in this paper. In this model, the dynamic Bayesian is investigated to solicit and organize agents to produce information and presentation assembly process in order to allocate the resources for an unseen task across multiple services in a dynamic environment. The user model is used to manage varying user constraints and user preferences to achieve system's goals.

  • PDF

Optimal Conveyor Selection Problem on a Diverging Conveyor Junction Point (컨베이어 분기점에서의 최적 인출 컨베이어 선택 문제)

  • Han, Yong-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.118-126
    • /
    • 2009
  • This research investigates the problem of minimizing setup costs in resequencing jobs having first-in, first-out(FIFO) constraints at conveyorized production or assembly systems. Sequence changing at conveyor junctions in these systems is limited due to FIFO restriction. We first define the general problem of resequencing jobs to workstations satisfying precedence relationships between jobs(Generalized Sequential Ordering Problem, GSOP). Then we limit our scope to FIFO precedence relationships which is the conveyor selection problem at a diverging junction(Diverging Sequential Ordering Problem, DSOP), modeling it as a 0-1 integer program. With the capacity constraint removed, we show that the problem can be modeled as an assignment problem. In addition, we proposed and evaluated the heuristic algorithm for the case where the capacity constraint cannot be removed. Finally, we discuss the case study which motivated this research and numerical results.

Genetic Algorithm based Optimal Design Methodology For Lever Sub-Assembly of Auto (오토 레버의 기구부 최적 설계 방안 제시를 위한 유전 알고리즘 적용 연구)

  • 정현호;서광규;박지형;이수홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.133-136
    • /
    • 1997
  • This paper explores the optimal design methodology for auto lever using a genetic algorithm. Component of auto lever has been designed sequentially in the industry, but this study presents the novel design method to consider the design parameters of components simultaneously. The genetic algorithm approach is described to determine a set of design parameters for auto lever. The authors have attempted to model the design problem with the objective of minimizing the angle variation of detent spring subject to constraints such as modulus of elasticity of steel, geometry of shift pipe, and stiffness of spring. This method can give the better alternative.

  • PDF

A Study on Robust Design Optimization of Layered Plates Bonding Process Considering Uncertainties (적층판 결합공정의 불확정성을 고려한 강건최적설계)

  • Choi Joo-Ho;Lee Woo-Hyuk;Youn Byeng-Dong;Xi Zhimin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.836-840
    • /
    • 2006
  • Design optimization of layered plates bonding process is conducted to achieve high product quality by considering uncertainties in a manufacturing process. During the cooling process of the sequential sub-processes, different thermal expansion coefficients lead to residual stress and displacement. thus resulting in defects on the surface of the adherent. So robust process optimization is performed to minimize the residual stress mean and variation of the assembly while constraining the distortion as well as the instantaneous maximum stress to the allowable limits. In robust process optimization, the dimension reduction (DR) method is employed to quantify both reliability and quality of the layered plate bonding. Using this method. the average and standard deviation is estimated. Response surface is constructed using the statistical data obtained by the DRM for robust objectives and constraints. from which the optimum solution is obtained.

  • PDF

Design of an Arm Section for a Direct Drive SCARA Robot having the Minimum Cycle Time (직접구동방식 수평다관절형 로봇의 최소 싸이클시간을 갖는 로봇팔의 단면설계)

  • Kang, B.S.;Park, K.H.;Kwak, Y.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.165-172
    • /
    • 1995
  • Many algorithms to enhance a speed performance of a robot have been studied, but it's rare to consider disign aspect of a robot arm for time optimal problem. In this paper, section demensions of a robot arm and a velocity profile of an end-effector were optimally designed to minimize the cycle time. Capacity of actuators, deflections of end-effector, and a fundamental natural frequency of the robot arm were constrained in optimal design. For a given path with a trapezoidal velocity profile, torques of each joint were calculated using the inverse kinematics and dynamics. For the SCARA type robot which is mainly used for assembly tasks, the time optimal design of each robot arm id presented with the above constraints.

  • PDF