• Title/Summary/Keyword: Aspherical

Search Result 188, Processing Time 0.092 seconds

Design of Smart Phone Camera Lens Using Forbes Aspherical Surface (Forbes 비구면을 사용한 스마트폰 카메라렌즈의 설계)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.141-145
    • /
    • 2017
  • We design an F/1.8 smart -phone camera lens utilizing he Forbes aspherical-surface equation, which can effectively create a strong asphere, compared to the conventional, standard aspherical equation. We also describe the principal methodology and procedural steps of optical design to achieve specifications.

Design of Spherical Aberration Free Aspherical Lens by Use of Ray Reverse Tracing Method (광선 역추적 방식을 이용한 구면수차 제거 비구면 렌즈의 설계)

  • 김한섭;박규열;이원규;전종업
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.191-198
    • /
    • 2003
  • In this study, aberration free aspherical lens design method named ray reverse tracing method is introduced. Differently from the traditional design method, the ray reverse tracing method traces the shape and location of a real object by use of its virtual image. From the result, especially spherical aberration free aspherical lens could be designed by use of the ray reverse tracing method. Furthermore, it could reduce the degree of dependence of optical characteristics on designer's ability, because deformation terms and optimization can be eliminated, which has been performed in conventional lens design process.

Pick-up Lens Manufacturing for Optical application using Diamond Turning Process (다이아몬드 터닝가공을 이용한 광정보저장용 픽업렌즈 제작)

  • Kim, J.H.;Kim, S.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.47-51
    • /
    • 2004
  • The aspherical lens are used as objective lens of optical pickup. The sample product is made before manufacturing the injection mould of lens to examine the design factor. The optimum cutting conditions of the main spindle speed, the depth of cut, the feed rate are found when we cut PMMA and PC lens sample with ultra-precision SPDT. The demanded surface roughness 10 nm Ra, aspherical form error 0.5 ${\mu}m$ P-V for aspherical lens of optical data storage device are satisfied for PMMA, but not satisfied for PC.

  • PDF

Development of the Aspherical Lens Polishing System with MR Fluid and Analysis of the Basic Polishing Characteristic of MR Polishing System (MR Fluid를 이용한 비구면 렌즈 연마 시스템 개발 및 기초 연마 특성 분석)

  • Lee, Jung-Won;Cho, Myeong-Woo;Ha, Seok-Jae;Hong, Kwang-Pyo;Cho, Yong-Kyu;Kim, Byung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.92-99
    • /
    • 2014
  • An aspherical lens, which resolves several problems with a spherical lens,typically serves asa key part of an optical system. Generally, an aspherical lens is fabricated using a diamond turning machine or by mean of injection molding. However, residual stress and/or tool marks can arise when using a commercial fabricating method such as DTM or injection molding. A polishing process, thus, is commonly used to obtain a high-precision aspherical lens. In this study, a polishing method using MR fluid was applied to minimize several problems, in this case residual stress and the creation of tool marks, during the cutting process. The MR polishing system was developed to polish aspherical lenses. A series of experiments were performed to obtain a very fine surface roughness. PMMA (the lens material for molding) was used as a workpiece, and the gap size, magnetic field intensity, wheel speed and feed rate were selected as the parameters in this study. Finally, a very fine surface roughness of Ra=2.12nm was obtained after MR polishing.

Spherical and Aspherical RGP Lens Fitting to Epithelium and Endothelium of Rabbit's Cornea -Scanning Electron Microscopy (구면과 비구면 RGP 렌즈 장기 착용시 각막 상피, 내피에 미치는 영향-주사전자현미경적 관찰)

  • Kim, In-Suk;Ryu, Gun-Chang;Chae, Soo-Chul;Jeon, Chang-Jin
    • Applied Microscopy
    • /
    • v.36 no.3
    • /
    • pp.227-234
    • /
    • 2006
  • To investigate the comparative effect of spherical and aspherical RGP lens were worn during 3 weeks on rabbit's cornea. Four white rabbits were worn right eyes with spherical lens and 4 white rabbits were worn right eyes with aspherical RGP lens. Left eyes were served as control. The rabbits were sacrificed at 3 weeks after fitting and observed morphological changes by scanning electron microscopy and also investigate proliferation rate of the corneal epithelium with RGP wearing. After spherical RGP lens wearing, the epithet layer damaged compared to aspherical lens. The superficial cell layer strip off seriously, cell size significantly changed abnormal. Both spherical and aspherical RGP lens fitting group showed so many bacteria and back surface of lens was found like a fern shape. The aspherical RGP lens original material type was some formal than spherical lens. We thought that these pattern was significantly altered with spherical lens by prohibited transmitter oxygen from atmosphere therefore the epithelium shape was changed. This suggested wearing the aspherical lens might be less physiologic than shperical lens fitting.

The Effects of Spherical and Aspherical RGP Contact Lenses on Visual Performance (구면 및 비구면 RGP 콘텍트렌즈가 시력의 질에 미치는 영향)

  • Kim, Soo-Hyun;Kim, Hyun Jung;Kim, Jai-Min
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.1
    • /
    • pp.31-38
    • /
    • 2009
  • Purpose: This study was to evaluate corneal topography, contrast sensitivity and ocular response of a RGP, back surface aspherical contact lens compared with a spherical contact lens. Methods: A total 37 subjects were fitted with a spherical lens in right eye and an aspherical in the left eye and were evaluated for changes in corneal topography and contrast sensitivity over a 2-month period. Results: Thirty-four of 37 subjects completed the 2-month study. The corneal topography did not show differences between spherical and aspherical RGP lenses. The eyes fitted with the aspherical lenses demonstrated a greater reduction in contrast sensitivity compared with their spherical counterparts under photopic condition. Subjects preferred comfort and ocular responses provided by the spherical lens. Conclusions: Corneal topography when comparing spherical and back surface aspherical RGP lenses did not show any significant difference in the subjects. Spherical RGP lens yields better contrast sensitivity and preference than aspherical RGP lens at photopic condition. Further investigation of aberrations induced by contact lens design is warranted to explain the observed differences in visual performance.

  • PDF

EVOLUTION OF AN ASPHERICAL VOID

  • Lee, Hae-Shim;Koh, Yoon-Suk
    • Journal of The Korean Astronomical Society
    • /
    • v.23 no.2
    • /
    • pp.112-115
    • /
    • 1990
  • We test an evolution of a giant void using an N-body simulation. We find the void expansion is faster than the rest part of the universe and the shape of an isolated aspherical void becomes more spherical as it evolves.

  • PDF