• Title/Summary/Keyword: Asphalt Concrete Pavement

Search Result 309, Processing Time 0.032 seconds

Evaluation of Self-deicing Function of Snow-melting Asphalt (자체 용설 아스팔트 혼합물의 용빙특성 분석)

  • Kim, Kwang-Woo;Lee, Gi-Ho;Hong, Sang-Ki;Jin, Jo-Ill;Doh, Young-Soo
    • International Journal of Highway Engineering
    • /
    • v.5 no.2 s.16
    • /
    • pp.1-14
    • /
    • 2003
  • This study is a fundamental research for developing self-deicing function of snow-melting asphalt concrete for roadway pavement. The objective of this study is to develop technology of making self-snow-melting asphalt pavement and evaluate properties of the asphalt concrete containing deicers. Asphalt concrete with deicers and CRM was produced by dry process. The $\alpha$-deicer, CRM and F-deicer were used for sand asphalt mixtures of thin-layer pavement on the existing pavement. The $\alpha$-deicer, $\beta$-deicer, CRM A, CRM B and C were used for 13mm dense-graded mixtures on surface course. Penetration grade of 60-80 asphalt was used for asphalt mixtures. Marshall mix-design, indirect tensile strength, freezing and thawing test, analysis of extracted water were carried out to evaluate performance of self deicing function of asphalt mixtures. The study result showed that snow-melting asphalt mixtures had not only good mechanical characteristics and good snow-melting function, but also chemically safe in environmental point of view.

  • PDF

An Experimental Study on Semi-Rigid Pavement (반강성포장에 대한 실험적 연구)

  • 임승욱;양성철;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.225-231
    • /
    • 1996
  • The dense graded asphalt concrete materials have been used for construction of pavement for a long time. The performance of asphalt concrete pavement, however, is influenced by various factors including high temperature and heavy axle loads which cause plastic deformation. The plastic deformation is one of the main functional disadvantages of flexble pavement. In this study, the semi-rigid pavement is considered to solve the problem. A set of experimental evaluation on semi-rigid pavement material has been coducted in laboratory to obtain it's physical properties and serviceabilities. The results of tests, including compressive strength, flexural strength, ravelling and wheel tracking, show that the semi-rigid pavement has a good mechanical properties and serviceabilities. Consequently, the semi-rigid pavement may be suitable to bridge deck, tunnel, slow lane and parking area pavements.

  • PDF

Analyzing the Fatigue Cracking and Maintenance of Asphalt Concrete Pavements, Based on Harmony Search Algorithm (하모니 검색 알고리즘을 이용한 피로균열의 포장설계 및 유지보수 시기 결정)

  • Lee, Sang-Yum;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.115-120
    • /
    • 2014
  • PURPOSES : This research describes how to predict the life cycles of fatigue cracking based on NCHRP Report 704 as well as modified harmony search (MHS) algorithm. METHODS : The fatigue cracking regression model of NCHRP Report 704 was used in order to calculate the ESAL (Equivalent Single Axle Load) numbers up to pavement failure, based on using material parameters, composite modulus, and surface pavement thickness. Furthermore, the MHS algorithm was implemented to find appropriate material parameters and other structural conditions given the number of ESALs, which is related to pavement service life. RESULTS : The case studies show that the material and structural parameters can be obtained, resulting in satisfying the failure endurance of asphalt concrete structure, given the number of ESALs. For example, the required ESALs such as one or two millions are targeted to satisfy the service performance of asphalt concrete pavements in this study. CONCLUSIONS : According to the case studies, It can be concluded that the MHS algorithm provides a good tool of optimization problems in terms of minimizing the difference between the required service cycles, which is a given value, and the calculated service cycles, which is obtained from the fatigue cracking regression model.

Development of a Junction between Airport Concrete and Asphalt Pavements (공항 콘크리트와 아스팔트 포장 간의 접속 방법 개발)

  • Park, Hae Won;Kim, Dong Hyuk;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.15-20
    • /
    • 2018
  • PURPOSES : The purpose of this study is to analyze the magnitude of shoving of asphalt pavement by junction type between airport concrete and asphalt pavements, and to suggest a junction type to reduce shoving. METHODS : The actual pavement junction of a domestic airport, which is called airport "A" was modified by placing the bottom of the buried slab on the top surface of the subbase. A finite element model was developed that simulated three junction types: a standard section of junction proposed by the FAA (Federal Aviation Administration), an actual section of junction from airport "A" and a modified section of junction from airport "A". The vertical displacement of the asphalt surface caused by the horizontal displacement of the concrete pavement was investigated in the three types of junction. RESULTS : A vertical displacement of approximately 13 mm occurred for the FAA standard section under horizontal pushing of 100 mm, and a vertical displacement of approximately 55 mm occurred for the actual section of airport "A" under the same level of pushing. On the other hand, for the modified section from airport "A" a vertical displacement of approximately 17 mm occurred under the same level of pushing, which is slightly larger than the vertical displacement of the FAA standard section. CONCLUSIONS : It was confirmed that shoving of the asphalt pavement at the junction could be reduced by placing the bottom of the buried slab on the top surface of the subbase. It was also determined that the junction type suggested in this study was more advantageous than the FAA standard section because it resists faulting by the buried slab that is connected to the concrete pavement. Faulting of the junctions caused by aircraft loading will be compared by performing finite element analysis in the following study.

Evaluating Rutting Performance of High-Durability Asphalt Concrete Mixtures and Epoxy Used for Installation of High-Speed Weigh-In-Motion System (고속축중기 시스템의 도입을 위한 고기능 아스팔트 혼합물 및 에폭시의 내구성 평가)

  • Kwon, Hong Jun;Lee, Jong Sub;Kwon, Oh Sun;Kwon, Soon Min
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.7-13
    • /
    • 2018
  • PURPOSES : In order to apply high-speed weigh-in-motion (HS WIM) systems to asphalt pavement, three high-durability asphalt concrete mixtures installed with a WIM epoxy are evaluated. METHODS : In this study, dynamic stability, number of loading repetitions to reach the rut depth of 1 mm, and rut depth measurements of three asphalt mixtures at $60^{\circ}C$ were compared using an Asphalt Pavement Analyzer (APA). Laboratory-fabricated material and field core samples were prepared and tested according to KS F2374. RESULTS : Through the laboratory tests, it was found that all three modified asphalt mixtures (stone-mastic, porous, and semi-rigid) with WIM epoxy showed favorable permanent deformation results and passed the dynamic stability criterion of 3000 loading repetitions per 1 mm. In addition, it was confirmed that the modified SMA mixtures cored from the field construction yields satisfactory rutting testing results using the APA. Finally, the epoxy used for the HS WIM installation shows good adhesion with the three asphalt mixtures and permanent deformation resistance.

Recycling of Shingle Waste for Pavement Asphalt Concrete (도로포장용 아스콘으로 슁글의 재활용)

  • Hong, Young-Ho;Kwon, Young Jin
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.614-618
    • /
    • 2006
  • Recycling of asphalt including shingle is much important for economic aspects such as a decrease of treatment cost. This research was carried out in order to process the recycled shingle to asphalt concrete which is a pavement material. Pure asphalt and the mixture of recycled asphalt were tested in terms of the thermal characteristics, viscosity, and penetration. DSC analysis indicates that the thermal characteristics of separate shingle showed similar properties regardless of processing conditions. Melting of asphalt separated from shingle occurred at $170^{\circ}C$. The viscosity and penetration of the 1~5 wt% of mixed recycling asphalt and raw material asphalt are suitable for the pavement material standard.

Investigation into Bonding Characteristics of Tack Coat Materials for Asphalt Overlay on Concrete Pavement (콘크리트포장 위 아스팔트 덧씌우기용 택코팅 재료의 접착강도특성 연구)

  • Cho, Mun Jin
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.85-94
    • /
    • 2013
  • PURPOSES: The performance of tack coat, commonly used for layer interface bonding, is affected by application rate and curing time. In this study, bonding strength tests were performed according to the application rate and curing time of asphalt emulsion. Based on finding from this study, optimum application rates and curing times are proposed. METHODS: In order to investigate bonding characteristic of asphalt emulsion, tests were performed on both asphalt concrete pavement and portland concrete pavement. Also, asphalt emulsions were tested at the application rate of 0, 0.2, 0.4, 0.6, and $0.8{\ell}/m^2$ and at the curing time of 0, 0.5, 1, 2, and 24 hours. Pull-off test and shear bonding strength test, which commonly used for bonding strength measurement of asphalt emulsion, were adopted for this study. To assess field performance under different testing condition, asphalt emulsions were applied to in-service pavement. Throughout coefficient of determination analysis between material index properties from asphalt emulsion and mechanical response from bonding strength tests, performance correlativity was analyzed. RESULTS: Test results show that optimum application rate for asphalt overlay on asphalt concrete pavement (AOA) and asphalt overlay on concrete pavement (AOC) was $0.4{\sim}0.5{\ell}/m^2$ and $0.3{\sim}0.5{\ell}/m^2$, respectively. According to the curing time increment, tensile strength and shear strength of AOC were increased to 22~44% and 20~39%, respectively. AOA case also show strength increment in tensile strength (42%) and shear strength (9%). We tested the applicability of tack coat materials at the field sites, and our findings demonstrated that the bonding (for D and E) and rapid curing (for B, C, and D, E) performances were superior than others. Among material index properties, there was a high correlation between penetration ratio and bonding strength test result. CONCLUSIONS : Result show that interlayer bonding strength was affected by asphalt emulsion type, application rate and curing time. AOC required slightly higher application ($0.1{\ell}/m^2$) than AOA. Both AOA and AOC cases show higher strength at longer curing time. Up to 2hours of curing, rapid strength increments were observed, but strength increment ratio was decreased after 2hours of curing. From the observed correlation between penetration ratio and bonding strength, it is expected that penetration ratio can be used as one of important factors affecting bonding strength analysis.

Effect of Asphalt Pavement Conditions on Tensile Adhesive Strength of Waterproofing System on Concrete Bridge Deck (아스팔트 포장 조건이 교면방수 시스템의 인장접착강도에 미치는 영향)

  • Lee, Byung-Duck;Park, Sung-Ki;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.5 no.2 s.16
    • /
    • pp.15-24
    • /
    • 2003
  • The performance of waterproofing system (WPS) is known to be a function of many complex interaction of material factors, design details, and the quality of construction, but it is mainly determined by the bond strength, which is measured by tensile adhesive strength (TAS) test. to the concrete bridge deck. In this research, eight waterproofing membranes were selected from commercial market and the tensile adhesive characteristics of the WPS on concrete bridge deck were investigated in view of various factor in asphalt pavement. The factors include type of asphalt mixture, pavement thickness, paving temperature and influence of wheel loading. TAS test of different asphalt pavement types showed that TAS of WPS under SMA (Stone Mastic Asphalt) pavement was greater than that under dense asphalt pavement. TAS of sheet membranes was improved as the compaction temperature of asphalt concrete increase, but TAS of liquid membranes were not. The influence of thickness of pavement val minimal with given laboratory test condition. TAS of sheet membranes after wheel tracking test were in the order of the sites under wheel path (UWP), before wheel tracking (BWT) and nearby wheel path (NWP). Since TAS of the same WPS of UWP was higher than TAS of BWT, wheel loading had function of pressing WPS resulting in higher adhesive strength. But liquid membranes were variable on types. The feature of detached interface after TAS test showed that sheet types were all detached in between deck concrete and WPS, and liquid types were detached in between asphalt pavement and WPS.

  • PDF

A Study on Mechanical Performance Evaluation and Economic Analysis by Reclaimed Hot Asphalt Pavement (순환 가열 아스팔트의 용도별 기계적성능 평가 및 경제성 분석 연구)

  • Mun, Sung Ho;Ka, Hyun Gil;Lee, Ci Won;Park, Yong Boo
    • Land and Housing Review
    • /
    • v.10 no.4
    • /
    • pp.51-59
    • /
    • 2019
  • The government is encouraging the notice of obligatory reclaimed asphalt as a result of the economic and social positioning of green growth to reduce the amount of waste resources and to solve natural resource problems by recycling continuously generated waste resources. However, it is necessary to develop application guideline for each application to apply reclaimed asphalt to the site because quality control of the reclaimed asphalt is difficult and the specifications are ambiguous as well. Therefore, in this study, the mix design, quality test, performance test, and finite element analysis about reclaimed Asphalt Pavement were conducted to develop application guideline for reclaimed hot asphalt. The mix design was carried out for the comparative general hot mix asphalt mixture, the reclaimed hot mix asphalt mixture using the additive, and the reclaimed hot mix asphalt mixture without the additive. Indirect tensile strength and tensile strength ratio tests were used to characterize the reclaimed hot mix asphalt mixture. Using the results of dynamic modulus test and FWD test for KPRP analysis and finite element analysis, the performance life was evaluated for general pavement and pavement using recycled aggregate. Finally, the life cycle cost analysis was used to compare and analyze the economics of reclaimed asphalt concrete pavement.

About Quiet Pavement Technologies in Korean Highway (국내 고속도로의 저소음포장 기술 동향)

  • Mun, Sung-Ho;Hong, Seung-Ho;Cho, Dea-Seung;Kim, Chul-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.491-495
    • /
    • 2008
  • The effects of vehicles and pavement surface types on noise have been investigated at the Korea Expressway Corporation's Test Road along the southbound side of the Jungbu Inland Expressway, South Korea. The study was conducted in 2005 and 2006 through field measurements at nine surface sections of asphalt concrete and Portland cement concrete pavements using eleven vehicles. For the road noise analysis, the sound power levels (PWLs) of combined noise (e.g., tire/pavement interaction noise and power-train noise together) and tire/pavement interaction noise using various vehicles were calculated based on the novel close proximity (NCPX) and pass-by methods. Then, the characteristics of the PWLs were evaluated according to surface type, vehicle type, and vehicle speed. The results show that the PWLs of vehicles are diversely affected by vehicle speed and the condition of the road surface.

  • PDF